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Abstract

Data deduplication is crucial for optimizing storage resources and saving
network bandwidth by identifying and eliminating duplicate data segments.
In this project, we design and implement SSD deduplication logic on Field-
Programmable Gate Arrays (FPGAs). FPGAs offer customizable hardware
acceleration, making them a compelling platform for enhancing deduplica-
tion performance.

Our proposed FPGA-based deduplication algorithm employs SHA3-256
hashing as a unique page identifier and a Bloom-filter-accelerated hash ta-
ble as an indexing mechanism to identify duplicate data chunks. The algo-
rithm is implemented completely in hardware with high-degree parallelism
by leveraging the FPGA’s reconfigurability. As a result, we achieved a 10x
improvement in latency compared to traditional software-based methods.
And the throughput of the deduplication system can reach 12.7 GB/s (100
Gbps).
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Chapter 1

Introduction

1.1 Introduction

The exponential growth of data in various fields has underscored the need
for efficient data storage and management techniques due to the relatively
higher cost of Solid State Drives (SSDs) and their limited lifetime [1,2]. As
a result, data deduplication has emerged as a crucial strategy to mitigate
these problems by identifying and eliminating duplicate data segments writ-
ten to the flash, thereby optimizing storage utilization and extending the
operational lifetime of flash memories.

Many software-based deduplication systems have been built and demon-
strated significant space saving [3,4]. However, with the escalating demands
for real-time data processing and enhanced system performance, there arises
a need for innovative and accelerated deduplication methods [5]. This is
where Field-Programmable Gate Arrays (FPGAs) come into play. FPGAs
offer parallel processing and hardware customization capabilities, making
them an attractive platform for accelerating computation-intensive tasks.

Nevertheless, existing FPGA-based approaches only use FPGAs to ac-
celerate hash computations. Either assume a close integration of FPGAs
within SSDs [6] or simply use FPGA as an offload engine which needs back-
and-forth communications between host and FPGA [5]. Since most com-
mercial SSDs do not have an FPGA integrated inside, those approaches
either restrict deduplication enhancements to customized SSDs or prevent
the exploitation of FPGAs’ full potential.

Our work addresses these limitations by moving the deduplication logic
to an independent abstraction layer between the host and SSD. This layer is
dedicated to deduplication and handles everything related to it: fingerprint
generation, fingerprint management, address translation, and garbage col-
lection. With this abstraction layer, neither the host nor the SSD is aware
of the existence of deduplication logic. Therefore, this is a drop-in solu-
tion for deduplication, as neither the host nor SSD needs to be modified.



Leveraging FPGA’s reconfigurability, this layer is implemented completely
in hardware. Our prototype reached 12.7 GB/s throughput for write re-
quests and less than 30 us latency for all write, read, and erase requests.

1.2 Our Contributions

1.2.1 Pure Hardware Implementation

A central contribution of our project is the realization of a purely hardware-
based data deduplication algorithm. We have developed a dedicated hard-
ware architecture for deduplication.

1.2.2 Independent Abstraction Layer

We introduce an independent abstraction layer encapsulating all necessary
functions for seamless interaction with the normal host and SSD. This mod-
ular design enables easy integration into existing storage infrastructures.

1.2.3 Bloom-filter-enhanced Hash Table Design

Our project introduces a Bloom filter design that is able to handle deletion
without space overhead to accelerate hash table lookup. We implement a
per-bucket Bloom filter in the hash table. The Bloom filter will be recon-
structed once the linked list lookup goes to the end. This is effectively a
deletion mechanism without going to counting Bloom filter with memory
space overhead.

1.2.4 Prototyping

Our prototype system is implemented on Xilinx Alveo ub5c¢c board and
demonstrated remarkable performance metrics.



Chapter 2

Related Work

Data deduplication has garnered considerable attention, resulting in many
software-based implementations and a growing interest in hardware accel-
eration. This section reviews relevant literature and highlights key aspects
of existing approaches. We categorize the discussed papers into two groups:
software-based implementations [7-15] and FPGA-accelerated methods [5,
6].

2.1 Software-based Implementations

Papers [7-15] present various software-based data deduplication techniques.
These approaches primarily focus on optimizing duplicate data identifica-
tion and storage efficiency within the Flash Translation Layer (FTL) of
SSDs. While these works contribute valuable insights into the challenges
and strategies for data deduplication, software-based systems do not scale
with the increasing performance of SSD arrays [5].

2.2 FPGA-accelerated Methods

Papers [5,6] introduce FPGA to accelerate hash calculation, showcasing the
potential of hardware platforms in enhancing specific deduplication compo-
nents. [6] integrates hardware accelerators (FPGA for MD5) within the SSD
and builds the rest of the deduplication system in FTL software. [5] offload
hash calculation and page compression-decompression to FPGA. The rest
of the deduplication system (fingerprint and address mapping management)
remains in software implementation on the CPU side.

2.3 Garbage Collection Mechanism

Once a page is not referenced by any LBA, this page needs to be deleted from
the flash. Only CAFTL [7] and DRACO [12] explicitly say how this garbage



collection is done in their systems. CAFTL uses two-level indirect mapping
for the addresses and maintains each page’s reference count in memory.
Only the pages with no references can be recycled by the garbage collector.
DRACO maintains a bit map that indicates if the page is referenced. They
periodically check the address mapping and mark the invalid pages, and the
in-place garbage collector will delete the unreferenced pages later.

2.4 QOwur Approach

In contrast to the aforementioned studies, our work represents a distinctive
contribution in several key aspects. Firstly, our design pushes the hardware
acceleration further by offering a complete hardware solution for data dedu-
plication. The FPGA-based architecture ensures accelerated processing of
deduplication tasks, resulting in enhanced efficiency and reduced processing
times.

Secondly, our approach introduces a dedicated abstraction layer between
the host and SSD. Our FPGA and driver provide a normal SSD interface
for the host and do not need any modifications on the SSD side. This
abstraction layer not only contains the necessary hash computation and fin-
gerprint management path for the deduplication system but is also capable
of handling instructions and mapping host LBA to the unique page LBA.

This abstraction layer also has its own garbage collection mechanism.
Similar to CAFTL, our design employs a reference counter and in-line garbage
collection. But we separate GC introduced by deduplication and origi-
nal GC inside SSD. The reference counter is stored together with the in-
memory address mapping table on FPGA and will update on each oper-
ation(write/erase). Once the reference counter of the corresponding page
goes to zero, FPGA will issue an erase instruction to SSD. This process is
managed purely by hardware, which minimizes the impact of deduplication
on overall system performance and ensures consistently optimal resource
utilization.

In summary, while prior works have explored both software-based and
FPGA-accelerated deduplication techniques, our project distinguishes itself
through a holistic hardware-based design encompassing the entire dedupli-
cation process. By providing an independent abstraction layer that contains
everything needed for deduplication and is implemented in pure hardware,
our approach offers a novel perspective on optimizing data deduplication for
efficient storage management.



Chapter 3

Algorithm

3.1 Address Translation

In normal SSD, data is stored in fixed-sized pages and they are addressed
by their Logical Block Address (LBA) from the host. Once a request comes,
FTL will translate this address to Physical Block Address (PBA). PBA is
the actual address of the page stored in flash memory.

SSD Driver FPGA SSD

SHA3 SSDLBA

(a) Normal SSD (b) Deduplication with SSD

Figure 3.1: Address Translation in Normal SSD and Deduplication SSD

To implement deduplication in SSD, we need to insert another layer
that translates the page address to the unique page address. In our system,
when a request comes, the driver first lookup which unique page the host
LBA corresponds to in the SSD, and the FPGA then lookup which LBA
that page is stored in the SSD. This address translation process is shown in
Figure 3.1. The host and SSD are unaware of this layer between them and
operate normally.

3.2 Computation Handling

3.2.1 Chunking

The first step of the algorithm is to chunk the input data stream into either
fixed-sized or variable-sized chunks. In our system, we use 4kiB fixed-sized



chunks.

3.2.2 Fingerprinting

Traditionally, data reduction is done by compression algorithms such as
LZ77/LZ88 [16,17]. These algorithms identify redundancy for short strings
by first computing a weak hash and then comparing hash-matched strings
byte-to-byte. Due to their space and time complexity, they are not widely
used in large-scale storage deduplication [1].

In chunk-level deduplication systems, unique pages are characterized by
their cryptographically secure hash signature (in our case, SHA3-256). Since
the hash collision probability of SHA-256 is much smaller than the hard
disk drive error in ZB and YB scale [1], we can safely regard this hash as a
collision-free function and use it as a unique fingerprint.

3.2.3 Indexing

On the FPGA, we are given SHA3-256 of the unique pages, and we need
to maintain a translation between this hash value to the SSD LBA and the
reference counter. As shown in Figure 3.2, this is done by a hash table.

bucket metadata content: linked 1list

HeadPtr BloomFilter SHA3 RefCount SSDLBA NextPtr Padding
bucketIdx >< 3

!

-+ —p -

Figure 3.2: Hash Table

We use the last 25 bits of SHA3-256 value as the bucket index, and
each bucket contains a linked list. We always keep the average length of
the linked list = 8. Different storage size corresponds to different bucket
count. Each bucket has a 32-bit Bloom filter to accelerate this linked list
lookup. The Bloom filter uses the first 15 bits of SHA3-256 as three 5-bit
hash functions(k=3).

3.2.4 Metadata Management

As shown in Figure 3.1, we need to manage two metadata tables. The
driver maintains the first table. It contains the mapping from the host LBA
to unique pages. The second table is maintained on FPGA as an in-memory
table. It contains information on unique pages: reference counter and where
it is stored in SSD (SSD LBA). On each update, the corresponding part in
the second table will also be sent to SSD as part of the page header.
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3.3 Instruction Handling

This section introduces how write, erase, and read instructions are treated
in the driver and FPGA. Figure 3.3 gives an overall view of instruction
handling.

EPGA Performance
[T m oo | Insertion throughput 12.7 GB/s
ETE SSDLBA PBA Insertion latency < 306us

all: opCode, SHA3, SSD LBA,

5 | Deletion latency < 15us
!

1

|

i

refCount

| | | I' | write: host LBA, isNew ?ED Rd)
B s T erase: isGC u:mv
e it bb P S (.
moi [opCode [ padding | SHA3 | erase [
1
noj
2 / Lookup :
Instr —»|_opCode | padding | SHA3 | reaq | SSD LBA !
ages
pad \ Lookup Res :
= Insert I
opCode padding start len write
WriTe l l I ] Auto GC :
erase/read |
erase/read Wait SHA3 :
erase/read Slice, '
erase/read Lookup h
1
1
pages Page SHA3 / ————— :
only new pages I
write

opCode: read,write,erase,updateHeader
metadata: same as hash table entry

Input Stream:
; Decode Decode & Compute SHA3 Hash Table Lookup ~ To SSD
page + instr P Metadata back

Figure 3.3: Instruction Handling

3.3.1 Read Instruction

For read instruction, the host gives a start LBA and length. Then, the
driver will do a lookup for the SHA3 values. Those SHA3 values are sent
to FPGA to look up their LBA seen by SSD. After that, SSD will transfer
back to the corresponding pages.

3.3.2 Erase Instruction

For erase instruction, the host gives a start LBA and length. Then, the
driver will do a lookup for the SHA3 values. Those SHA3 values are sent
to FPGA to look up their LBA seen by SSD and decrease the reference
counter by one. SSD will receive a new reference count and update header
instruction if the reference count is not zero. If the reference count is zero
after deletion, SSD will receive an erase instruction on the corresponding

page.
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3.3.3 Write Instruction

For write instruction, the host will give a start LBA, length, and the data
to write. First of all, the driver will check if all the places are free. If not,
the driver will issue an erase instruction first. From the FPGA side, all
write instructions are written to free blocks, and only newly inserted pages’
reference counters need to be updated. Similar to erase, FPGA will tell SSD
to insert a page if it is new and only tell SSD to update the header if the
page already exists.

3.3.4 Dependencies Between Instructions

If there is no GC mechanism in page deletion, there are no dependencies
between write, erase, and read instructions since they are only plus one or
minus one in the reference counters. As a result, dependencies only exist
between read and erase when the erase instruction triggers GC(erase a page
that is only referenced by one place). This can be easily avoided in the
driver software, so our hardware implementation has no dependency checks.

12



Chapter 4

Hardware Architecture

In the previous chapter, we described our basic algorithm for deduplication
and how it works with different instructions. This chapter will show how

each part of the algorithm is implemented in hardware.

The key component of our system is the DedupCore. Its overall hardware
architecture is shown in Figure 4.2. DedupCore communicates with the host
via Coyote [18] shell. Coyote handles basic communications with the host,
and requests come to DedupCore through DMA Engine. DedupCore will
send responses (metadata and read pages) back to Coyote in the end.

FPGA Deduplication Logic

PageStream InstrStream

| StreamFork

Path:HashTable Path:PageWiriter

| PageBuffer & Distributor |

Decoder

64 SHA3-256

Cores

[ sha3Val Arbiter | i~ =Y/F DEMUX T
1
1
[ SHAS | Wait | [ Ready
[ Slicer & Issuer | e S17----f sticer &

|
{Hash Table Lookup Engine ‘

| Distributor
] T J

6 Lookup i
FSMs :

Memory
Manager

Arbiter
Arbiter

Issuer

pageResp

| Lock Table & Initializer | |

] | S - - o< ]

Storage Interface
Figure 4.1: FPGA Deduplication Logic

When a request stream comes, the first step is to separate it into an
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instruction stream and a data stream. After that, each stream is forked into
two identical streams: one goes to the hash table path, and the other one
goes to the page writer path. The hash table path is responsible for hash
computation and metadata management. Page writer first buffers input
pages and instructions to wait for results from the hash table and then
decide what to do to the pages and instructions.

4.1 Hash Table Path

The hash table path consists of the SHA3 core group, instruction decoding
logic, instruction slicing and issuing logic, and hash table lookup engine.

4.1.1 SHA3 Core Group

The whole DedupCore is written in Scala with SpinalHDL [19], and the
SHA3 cores are used from SpinalCrypto [20]. In the RTL simulation, one
SHA3 core needs around 3360 clock cycles to calculate the SHA3-256 value
for a 4 kiB page. The input data width is 512b, corresponding to 64 cycles
per page. To match the SHA3 core’s throughput to the input throughput,
we use 64 SHA3 cores to compute the hash in parallel.

4.1.2 Instruction Decoder

The decoder will decode the type of instruction (write/erase/read/nop) and
decide which queue the instruction should go to. In the hash table, the
write instruction needs to wait for the SHA3 value calculation. The erase
and read instructions are ready to be issued to the hash table since they
already have SHA3 values. Nop will be thrown away.

4.1.3 Instruction Slicer and Issuer

The issuer’s job is to decide which instruction to issue to the lookup engine.
For write instruction, it needs to be sliced and wait for SHA3 value before
being sent to hash table lookup. In the current implementation, there are
no complicated strategies inside the issuer. The instruction order seen by
the hash table is the same as the input.

14



4.1.4 Lookup Engine

Lookup Engine receives an opcode and a SHA3. It will look up this unique
page in the hash table and update the metadata depending on the instruc-
tion. If a page’s reference count goes to zero, this page will be deleted from
the hash table.

I opCode | sha3Val I

Insrtructionl

. ——— Lookup |

| opCode | ssdlLba IreanuntI sha3Val

o1 FSM Result

| P
I]m

Lookup Epnginé |

Distributop--~~

Memory

Manager Fﬁﬂs

.
M
=
-~
o
z
=<C

HBM Interface

Figure 4.2: Lookup Engine and Lookup FSM

Lookup Engine will look up the hash table and tell the page writer where
the page was/will be stored, the current reference counts, and the original
instruction. Memory Manager will dynamically manage memory and SSD
space and provide the Lookup Engine with necessary functionalities (malloc
and free).

15



Lookup FSM

When an instruction comes, it will be dispatched to 1 of 6 FSMs. The last
25 bits of SHA3 value will be used as bucket index in the hash table, and the
first 15 bits will be used as three 5-bit hash values for each bucket’s Bloom
filter. This is shown in Figure 4.3.

opCode SHA3
. 257 255 0
instr - >
- - —p
3x5b 25b
Bloom Filter Bucket Index

Figure 4.3: Bucket Index and Bloom Filter Hash

{Fetch InstructionJ

[ Lock Acquire ]

{ Fetch Metadata J

[ Fetch Entry }

[ Execute ]

[ Write Back ]

[ Lock Release ]

Figure 4.4: State Transfer Diagram for Lookup FSM
Figure 4.4 shows the state transfer diagram for each state machine. Af-

ter fetching the next instruction from the distributor, state machines will
communicate with the Lock Manager to acquire a lock on the corresponding
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bucket. Once the lock is acquired, state machines will go to the memory to
fetch bucket metadata and each element in the linked list to see if there is
a match.

State machines will go to the Execute state if there is a match or they
reach the end of the linked list. Depending on the lookup results and in-
structions, the state machine will execute different operations on the current
entry, previous entry, and bucket metadata. Those operations are summa-
rized in Table 4.1. In the end, the state machine will release the lock in the
Lock Manager and output all metadata related to the current instruction.

Table 4.1: State Machine Operations for Each Instruction at Execute and
Write Back State

found not found

insert new entry with

increase reference count
reference 1 at head

write
write back new entry
dat t ent
update curtent enity update metadata
decrease reference count
if reference = 0: GC (delete entry),
erase modify previous entry/metadata. illegal

if not GC: update current entry.
if GC: update previous entry/metadata

road read metadata illegal

no write back

Bloom Filter

We must go to the end of a linked list before we can claim that the current
page is new. To accelerate new page lookup, we employ a Bloom filter in
each bucket.

[e]ofefofefo]e]o]

insert x

hash x 3

[2]e]ef1]efefo]1]

Figure 4.5: Principle of Bloom Filter
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Bloom filter is a data structure that can tell the element definitely does
not exist or probably exits in a set. Figure 4.5 shows the basic principle of the
Bloom filter. When a data item is inserted into the filter, its corresponding
hash values are employed to set the corresponding bits in the array. In
our design, each bucket employs a 32-bit Bloom filter with 3 5-bit hash
functions(first 15 bits in SHA3-256 value). During lookup, Bloom filter will
return true (exist in the set) if all bits are already 1. There are no false
negatives, but false positives (FP) can occur due to hash collisions.

Deletion is not possible in the Bloom filter. To implement deletion in-
struction in the Bloom filter, a general approach is to use the counting Bloom
filter. Instead of using 1 bit per entry, Counting Bloom filters implement a
counter in each entry. The counter will increase when insertion and decrease
in deletion.

The drawbacks of counting Bloom filters are also obvious: 1. Space over-
head: counting Bloom filters uses significantly larger memory spaces. For
example, a 16-bit counting Bloom filter uses 16x space in memory compared
to a normal Bloom filter. 2. Control overhead: We must ensure the element
we want to delete exists in the set. When a counter overflows, we cannot

modify this entry anymore.
insertSHA3
e IriteBack

isFP

|bucketBloomFi1ter:

\

1 XnW 4

jma {om

[fetchedsHA3 | [fetchedSHA3 |

I 0 — >

Figure 4.6: Principle of Bloom Filter Reconstruction

Our system employs a per-bucket normal Bloom filter design with false
positive detection and reconstruction logic. This design harnesses the inher-
ent properties of Bloom filters, allowing us to detect new elements quickly
and bypass the linked list lookup. Although deletion is not possible in a
normal Bloom filter, this design allows us to reconstruct the whole Bloom
filter every time FP happens.

Figure 4.6 shows the hardware architecture of Bloom filter reconstruc-
tion. Besides the Bloom filter read from metadata, our state machine will
recalculate a new Bloom filter during the hash table lookup. FP means
when a new element comes, the Bloom filter says it exists in the linked list
instead of saying it is new. This means the FSM will go to the end of the
linked list, and we will write back the newly constructed Bloom filter to
DRAM. This reconstruction mechanism is effectively a deletion operation
without introducing space and control overhead.
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Lock Manager

To guarantee the correctness of Lookup FSMs’ parallel execution, we employ
a Lock Manager in our system. Figure 4.7 shows its hardware architecture.

| opCode | fsmid [bucketIdx]

AXI Connection
Lock Request ] J - J

Yy A

Lock Manager [:EEEEEEE:]

é

Connect
Connect [

Lock Manager Logic
i Lock Status

fsmId bucketIdx isActive

\ ~

\ valid payload re‘adr
] f S

false
connect-s\T MUX F/
\J

valid payload ready

Issue Logicé

Figure 4.7: Lock Manager

We use (strict) two-phase locking (2PL) in our system. Since each FSM
will lookup the linked list in each bucket and write back bucket metadata
and some entries, this locking mechanism is equivalent to granting the FSM
an exclusive lock on the whole bucket. This is why the state machine enters
only once lock acquire/release state every lookup. On the lock manager side,
it only accepts state machine ID and bucket index as lock requests.

Another design principle is to minimize the communication overhead
between the Lock Manager and Lookup FSMs. Instead of sending a grant
or a wait response back to the state machines, Lock Manager will directly
control the AXI connection between FSM and DRAM. Only FSMs with
active locks are allowed to connect to DRAM.

When a new lock request comes, the Lock Manager will check if other
FSMs lock the bucket. If not, the new request will be registered as active in
the lock status table. Otherwise, this request will go to the Parking Queue.
The request at the head of the Parking Queue will be checked every cycle to
see if it is possible to grant a lock to it, and it always has priority compared
to new requests.

Memory Manager

Memory Manager is a unit that manages free space in both SSD and DRAM.
There is a one-to-one correspondence between hash table entries in DRAM
and unique page blocks in SSD. Therefore, we can manage both of them by
one unit if we force them to have the same layout.
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Our Memory Manager is a huge FIFO that contains all free block ad-
dresses. We need one 32-bit block address for one 512-bit hash table entry.
This means the space used by this free index list is 32/512 = 6% of the
DRAM. This is not a big overhead to DRAM space, but we cannot keep
all free indexes on-chip. As shown in Figure 4.8, conceptually, our Memory
Manager is a big FIFO go through DRAM.

DRAM

BRAM

Insert Erase

Figure 4.8: Free Index List

freeIdx()
32b

Q
(&)
@©
Y
=
(<))
+
c
-
=
om
= =
| Arbiter |
*32b
mallocIdx()

Figure 4.9: Memory Manager

The architecture of this unit is shown in Figure 4.9. After reset, new
indexes are generated by the Init Counter. When an FSM frees a memory
position, Memory Manager will first try to buffer the index in an on-chip
buffer. If too many indexes are freed up, those indexes will be sent to
DRAM. We use double buffering and prefetching when communicating with
DRAM to ensure we are always ready to accept the freed index and malloc

new index.
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4.2 Page Writer Path

The first part of the Page Writer is some buffers for input pages and instruc-
tions. Pages are buffered and waiting for results from the hash table. Only
new pages will be sent to the storage controller. Instructions are classified
and buffered. The hash table will send the metadata to the page writer. The
storage controller’s job is to react differently to the instructions depending
on the metadata. For write instructions, the page will be written to storage
if the reference count is 1. For erase instructions, the page in SSD will be
deleted if the reference count is 0. Read instructions will always be sent to
SSD. Otherwise, SSD will only receive the update header instruction.

For the page header, we keep it the same as the hash table entry. The
new page header is always sent to SSD.
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Chapter 5

Results

This chapter will show the workload generation and the performance results
from experiments.

5.1 Workload

Figure 5.1 shows the hash table in our experiments. We use 32768 buckets
(reminder: average length of linked list = 8) corresponding to 1 GiB SSD
space in our prototype.

bucket metadata content: linked list

HeadPtr  BloomFilter SHA3 RefCount SSDLBA NextPtr Padding
32768 Bucket 3

-
32b 32b 512b

Figure 5.1: Hash Table Bucket Count in Experiments

While the SHA3 core group’s throughput is constant, the Lookup En-
gine’s throughput highly depends on the workload. The following two factors
may affect the throughput:

1. Hash table fullness. More items inserted in the hash table means
a longer linked list we need to lookup. We would like to know how our
performance is affected by this.

2. Ratio of new pages. While we assume old pages randomly occur in the
linked list, we always need to go to the end of a linked list when we lookup
for the new pages. We want to know how our Bloom filter can accelerate
the new page lookup.
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5.2 Throughput vs. #FSM

Figure 5.2 shows the system’s insertion and deletion throughput when the
hash table is full. The throughput is obtained by randomly inserting/deleting
16384 old pages in one request batch.

T
mmm Deletion
I Insertion

|12.7 GB/s

Throughput[M Page/s]

4 FSM 6 FSM 8 FSM
Number of State Machines

Figure 5.2: Throughput vs. #FSM when Hash Table is 100% Full

When using 4FSM, our system’s throughput is limited by the hash table
lookup. For 6 and 8 FSMs, While deletion throughput goes higher, insertion
throughput remains constant as it is limited by the DMA throughput. We
need at least 6 FSMs for hash table lookup to saturate DMA throughput.

5.3 Throughput and Latency vs. Hash Table Full-
ness when Using 6 FSMs

Figure 5.3 shows how throughput and latency vary with hash table fullness
when we use 6 FSM and requests only contain old pages. Throughput
is obtained by inserting/deleting 16384 random old pages in one request
batch. Latency is obtained by inserting/deleting 16 random old pages in
one request batch(FPGA will respond to the host in batches of 16 requests
in our system).
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Figure 5.3: Performance vs. Hash Table Fullness for 6 FSM

The higher the fullness, the longer the linked list we need to lookup.
That is why the deletion throughput decreases with the increase of the hash
table fullness. For the insertion case, we are always limited by the DMA
throughput. In the latency case, with a longer linked list lookup, we have an
increase in latency. The difference between insertion and deletion latency
is ~15us. This is introduced by SHA3-256 hash value calculation (3360
cycles).
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5.4 Worst Case Throughput: Effect of Bloom Fil-
ter

To show the effect of the Bloom filter, Figure 5.4 gives the worst-case inser-
tion throughput. Worst-case means all the lookups must go to the linked
list’s end. Here, we first insert random pages into the system until the hash
table only has 16384 entries available. Then, 16384 new pages are inserted
into the system.

4.0 T T T

3.5 .

Throughput[M Page/s]

6 FSM w/o BF 6 FSM with BF 8 FSM w/o BF
Number of State Machines

Figure 5.4: Effect of the Bloom Filter

There is no throughput drop for the 8 FSM case since we have enough
compute resources. For normal 6 FSM (no Bloom filter) cases, there is a
20% throughput drop. Introducing the Bloom filter alleviates this to only a
4% throughput drop.

5.5 Throughput vs. Deduplication Percentage

Figure 5.5 shows our system’s throughput in different deduplication per-
centages. The deduplication percentage means the ratio of old pages in the
coming write requests. 0% means all pages are new and 100% means all
pages are old page. The hash table is inserted only to have 16384 entries
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available to show the results better. In this case, 0% deduplication per-
centage corresponds to the worst case scenario from the previous section.
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Figure 5.5: Throughput vs. Deduplication Percentage

While throughput is a constant in the 8 FSM case, there is a drop when
less than 60% of the coming pages are old in the 6 FSM case without Bloom
filter. With Bloom filter, the drop only visible when deduplication percent-
age is less than 40% and still can reach 12.1 GB/s in the worst case.
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Chapter 6

FPGA Floorplan

6.1 Floorplan and Resource Utilization of the Whole
System

Figure 6.1: FPGA Floorplan of the Whole System

Figure 6.1 shows the FPGA floorplan, and resource utilization is shown
in Figure 6.2. The whole system uses 42.3% CLB and 16.3% BRAM re-
sources on the FPGA.
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Figure 6.2: CLB and BRAM Resource Utilization of the Whole System

6.2 Floorplan and Resource Utilization inside Dedup-
Core

Figure 6.3 shows the floorplan for components inside DedupCore. Resource
usage inside DedupCore is shown in Figure 6.4. In the DedupCore, resource
is mainly (~90%) used by the 64x SHA3 cores.
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Figure 6.3: FPGA Floorplan of DedupCore Components
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Figure 6.4: CLLB and BRAM Resource Usage inside DedupCore
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Chapter 7

Conclusion

In this project, we design and implement a data deduplication system on
FPGA. This system works as an independent layer between the host and
SSD, which is different from all the existing implementations.

We integrated SHA3 core groups, instruction handling logic, and hash ta-
ble lookup logic on FPGA. We use reference counters and an in-line garbage
collection mechanism to remove pages with no references. In the hash table,
the linked list lookup is accelerated by our per-bucket Bloom filter. We de-
tect false positives and reconstruct the Bloom filter as a deletion mechanism.

With 6 FSM and Bloom filter, we can saturate DMA throughput in
normal cases. And reach 12.1 GB/s in the worst cases. For 8 FSM, we can
reach 12.7 GB/s in any corner case. The insertion latency of the FPGA
logic is smaller than 30 us for writing and smaller than 15 us for erasure
and reading.

30



Bibliography

[1]

Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua,
Min Fu, Yucheng Zhang, and Yukun Zhou. A comprehensive study of
the past, present, and future of data deduplication. Proceedings of the
IEEE, 104(9):1681-1710, 2016.

Jonghwa Kim, Choonghyun Lee, Sangyup Lee, Ikjoon Son, Jongmoo
Choi, Sungroh Yoon, Hu-ung Lee, Sooyong Kang, Youjip Won, and Jae-
hyuk Cha. Deduplication in ssds: Model and quantitative analysis. In
2012 IEEFE 28th Symposium on Mass Storage Systems and Technologies
(MSST), pages 1-12, 2012.

Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ottean, Jin Li, and
Sudipta Sengupta. Primary data Deduplication—Large scale study
and system design. In 2012 USENIX Annual Technical Conference
(USENIX ATC 12), pages 285-296, Boston, MA, June 2012. USENIX
Association.

Cornel Constantinescu, Joseph Glider, and David Chambliss. Mixing
deduplication and compression on active data sets. In 2011 Data Com-
pression Conference, pages 393-402, 2011.

Mohammadamin Ajdari, Pyeongsu Park, Joonsung Kim, Dongup
Kwon, and Jangwoo Kim. Cidr: A cost-effective in-line data reduc-
tion system for terabit-per-second scale ssd arrays. In 2019 IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), pages 28-41, 2019.

Zheng Guo Chen, Nong Xiao, Fang Liu, Yu Xuan Xing, and Zhen Sun.
Using fpga to accelerate deduplication on high-performance ssd. In Ma-
terials Science and Intelligent Technologies Applications, volume 1042
of Advanced Materials Research, pages 212-217. Trans Tech Publica-
tions Ltd, 11 2014.

Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL: A Content-
Aware flash translation layer enhancing the lifespan of flash memory

31



[11]

[12]

[13]

[14]

[15]

based solid state drives. In 9th USENIX Conference on File and Stor-
age Technologies (FAST 11), San Jose, CA, February 2011. USENIX
Association.

Ramin Gholami Taghizadeh, Reza Gholami Taghizadeh, Fahimeh
Khakpash, Mohammadreza Binesh Marvasti, and Seyyed Amir Asghari.
Ca-dedupe: content-aware deduplication in ssds. The Journal of Su-
percomputing, 76(11):8901-8921, Nov 2020.

Jin-Yong Ha, Young-Sik Lee, and Jin-Soo Kim. Deduplication with
block-level content-aware chunking for solid state drives (ssds). In 2013
IEEE 10th International Conference on High Performance Computing
and Communications 2013 IEEE International Conference on Embed-
ded and Ubiquitous Computing, pages 1982-1989, 2013.

Zhengguo Chen, Zhiguang Chen, Nong Xiao, and Fang Liu. Nf-dedupe:
A novel no-fingerprint deduplication scheme for flash-based ssds. In
2015 IEEE Symposium on Computers and Communication (ISCC),
pages b88-594, 2015.

You Zhou, Qiulin Wu, Fei Wu, Hong Jiang, Jian Zhou, and Chang-
sheng Xie. Remap-SSD: Safely and efficiently exploiting SSD address
remapping to eliminate duplicate writes. In 19th USENIX Conference
on File and Storage Technologies (FAST 21), pages 187-202. USENIX
Association, February 2021.

Bon-Keun Seo, Seungryoul Maeng, Joonwon Lee, and Euiseong Seo.
Draco: A deduplicating ftl for tangible extra capacity. IEEE Computer
Architecture Letters, 14(2):123-126, 2015.

Yoshihiro Tsuchiya and Takashi Watanabe. Dblk: Deduplication for
primary block storage. In 2011 IEEFE 27th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1-5, 2011.

Zhichao Yan, Hong Jiang, Song Jiang, Yujuan Tan, and Hao Luo. Ses-
dedup: a case for low-cost ecc-based ssd deduplication. In 2019 35th
Symposium on Mass Storage Systems and Technologies (MSST), pages
292-298, 2019.

Bingi Zhang, Chen Wang, Bing Bing Zhou, and Albert Y. Zomaya. In-
line data deduplication for ssd-based distributed storage. In 2015 IEEE
21st International Conference on Parallel and Distributed Systems (IC-
PADS), pages 593-600, 2015.

J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. [EEE Transactions on Information Theory, 23(3):337-343,
1977.

32



[17] J. Ziv and A. Lempel. Compression of individual sequences via variable-
rate coding. IEEE Transactions on Information Theory, 24(5):530-536,
1978.

[18] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. Do OS abstrac-
tions make sense on FPGAs? In 1/th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20), pages 991-1010.
USENIX Association, November 2020.

[19] SpinalHDL. https://github.com/SpinalHDL/SpinalHDL. Accessed:
2023-08-24.

[20] SpinalCrypto. https://github.com/SpinalHDL/SpinalCrypto.  Ac-
cessed: 2023-08-24.

33



