ETH

Eidgendssische Technische Hochschule Ziirich Institut fir Integmerte SySteme
Swiss Federal Institute of Technology Zurich Integrated Systems Laboratory

DEPARTMENT OF INFORMATION TECHNOLOGY AND
ELECTRICAL ENGINEERING

Spring Semester 2022

Design of a Floating-Point Stochastic
Rounding Unit

Semester Project

Jiayong Li
jiayli@student.ethz.ch
Enci Zhang

zhange@student.ethz.ch

June 2022

Supervisors: Luca Bertaccini, 1bertaccini@iis.ee.ethz.ch
Gianna Paulin, pauling@iis.ee.ethz.ch
Tim Fischer, fischeti@iis.ee.ethz.ch

Professor: Prof. Dr. Luca Benini, 1benini@iis.ee.ethz.ch

Acknowledgements

First, we would like to thank our Ph.D. supervisors, Luca Bertaccini, Gianna Paulin, and
Tim Fischer, for their help, support and guidance. In addition, our senior scientist at
ETH, Frank Kagan Giirkaynak gave some insightful inputs during the design review. The
course units VLSI I and II arm us with relevant knowledge and guarantee a quick start
for our project. We also want to thank our principal supervisor, Prof. Dr. Luca Benini,
and the IIS group for providing this wonderful opportunity, during which we could get
a glimpse of digital integrated circuit design. And finally, we direct our gratefulness to
ETH Ziirich, for bestowing us with first-class education and academic atmosphere.

ii

Abstract

Deep Neural Networks (DNNs) have been used on a wide range of problems in our life.
But training such an algorithm requires a lot of memory and energy. To save memory
and be more energy-efficient, academia and industry have started to re-examine the
required precision in DNNs by using limited-precision data representations. With this
decrease in bitwidth, stochastic rounding is brought forward as the counteraction against
accuracy degradation. Benefiting from its probability-based characteristics, stochastic
rounding does not suffer from stagnation. As a result, it works better than other rounding
methods when putting a small adjustment on a relative big value, which is the typical
case in training DNNs. Studies of low-precision neural network training have proven
accuracy enhancement when substituting the widely-used RNE with stochastic rounding.
Therefore, in this project, we extend a former FPU to support stochastic rounding. The
performance of this extension is compared against RNE round mode in three-operand
additions and sum of dot products accumulating in a larger formats.

iii

Declaration of Originality

I hereby confirm that I am the sole author of the written work here enclosed and that I
have compiled it in my own words. Parts excepted are corrections of form and content
by the supervisor. For a detailed version of the declaration of originality, please refer to
Appendix [C]

Jiayong Li,
Enci Zhang,
Zurich, June 2022

iv

Contents

[1.3.4. Tapeout Adaptations|. .

[2. Algorithm]|

[2.1. Existing Stochastic Rounding Algorithms|

[2.2. Our Hardware SR Algorithm| .

(3. _Hardware Architecture
[3.1. Basic Setup|
[3.2. Implementation and Parameters|

A Verificahs [Resulis

|4.1. Possible Configurations in the Hardware and Cases Tested|

4.2. Input Generation|
4.3. Golden modelsl
4.3.1. In Python|

4.4.1. VSUM, FP16 Input, FP16 Output|

|4.4.2. Other operations and formats|

[4.5. Implementation and AT analysis|

5. Conclusion and Future Work]

10
10
10
11
12
13
15
16
21
23

24

Contents

[A. More Evaluation Results|
IA.1. VSUM, FP8 Input, FP8 Output|

[A.2. VSUM, FP32 Input, FP32 Outpul]

[A.3. SDOTP, FP§ Input, FP16 Output|

[A.4. SDOTDP, FP16 Input, FP32 Output]

|A.5. Comparison of SDOTP Unit with Different Pipeline Registers|

[A.6. Area of SDOTP Unit with and without RSR. Extensionsl

[B. Task Description|

[C. Declaration of Originality]

vi

26
26
27
28
29

30

31

36

List

ot Figures

[3.1. Hardware architecture of the rounding unit and 1its intertace with SDOTP |
[modulel. 9
4.1. Input distributions of FP16. Left to right: U(0,1),U(—1,1), N(0,1).| . . . 11
4.2. Input distributions of FP8. Left to right: U(—1,1), N(0,1)[. 11
|4.3. Cross comparison between various operation modes in Python|. 12
|4.4. mean and variance of RSR over 10 runs, left: FPS, right: FP16| 13
|4.5. absolute error of RSR and RNE in Julia, left: VSUM FP16 — FP16 with |
| U(—1,1) input, right: VSUM FP32 — FP32 with N(0,1) input| 15
|4.6. Functional verification setup.| 16
[4.7. Results of VSUM, U(0, 1) iutput. Top left: accumulated value over 10000 |
| VSUM. Top right: average error of RSR compared to FP64. Bottom |
| left: standard deviation of error. Bottom right: RSR’s error disrtibution |
| compared to RNE mode betore it stagnated.|. 17
[4.8. Results of varying p rsr. Left to right: average of abs(error) of RNE and
| different precision’s RSR, standard deviation of abs(error), mean squared
I 5 [18
[4.9. Results of varying LFSR config. Left to right: average of abs(error) of |
| RNE and RSR, standard deviation of abs(error), mean squared error| . . . 18
|4.10. Average value ot the first 1 million outputs from the LFSR, values are |
| obtained by setting the MSB of LFSR output to 2= 19
[4.11. Results of VSUM, U(—1,1) input. Left to right: average error of RSR |
| compared to FP64, standard deviation of error, RSR’s error disrtibution |
| compared to RNE.| oo 19
{4.12. Results of VSUM, U(—1,1) and N(0,1) input. Each line: left, average of
abs(error) of RNE and RSR using 64-bit LFSR with 3 cipherlayers, right,
average of abs(error) when fixing p rsr = 12 and varying the configura-
| tions of LESRI o 20
|4.13. Comparisons between different rounding modes and multiple times of RSR |
| with different p rsr| oL 21

vii

List of Figures

|4.14. Comparisons between different rounding modes and multiple times of RSR |

with different p rsr| oL oL 22
|4.15. Comparison of SDOTP unit with and without RSR implementation|. . . . 23
|IA.1. Results ot changing parameters for VUM, FP8 mput.| 26
|IA.2. Results of changing parameters for VSUM, FP32 input.| 27
|IA.3. Results of changing parameters for SDOTP, FP8 mput.| 28
|A.4. Results of changing parameters for SDOTP, FP16 input.|. 29
[A.5. Comparison of SDOT'P unit with different pipeline registers| 29

viil

List of Tables

ix

Chapter

Introduction

1.1. Context and Motivation

Deep Neural Networks (DNNs) have achieved great success over a wide range of problems
in the past decade. However, these models are typically very big and training a DNN
is power-hungry. Since the Neural Networks (NNs) are resilient to precision losses, one
approach to reduce DNN’s memory footprint and achieve a more energy-efficient training
process is to utilize floating-point(FP) formats with reduced precision. Under this con-
text, Stochastic rounding(SR) is introduced as a novel floating-point rounding method
that aims to mitigate the degradation of model accuracy due to sacrificing the accuracy
of arithmetic operations.

Stochastic Rounding is a rounding method that randomly maps a real floating-point
number to one of its two nearest values following a certain probability regime. Unlike
the commonly-used RNE mode, which rounds to the nearest value and settles ties to
even, stochastic rounding does not suffer from stagnation and consequently outperforms
RNE during additions where the two addends have a significant difference. This merit
of SR has been investigated and explored by various studies[I] [2][3] in neural network
training with low-precision floating-point formats. When employing stochastic rounding
over the RNE mode, all these works show accuracy enhancement in respective machine
learning tasks.

In our project, we implement a stochastic rounding extension for the sum-dot-product(SDOTP)
module of an existing floating-point unit(FPU), fpnew [4], which supports trans-precision
computations with instructions contained in the -F and -D RISC-V instruction set ar-
chitecture (ISA) extensions. Then, we adapt the rounding unit to correctly interface
with the SDOTP module and exhaustively test the functionality and performance of

1. Introduction

our stochastic rounding mode. Finally, we integrate the new FPU into a microcon-

troller architecture-PULPissimo [5], an energy-efficient, single-core platform developed
by IIS.

1.2. Related Work

Since its proposal in 1992 by Hohfeld and Fahlman|6], Stochastic Rounding has been
widely applied to save hardware resources by enabling low-bitwidth Neural Network
training. Gupta et al.[7] prove that with SR, a 16-bit fixed-point data representation
incurs little or no degradation in classification accuracy. Su et al.|2] delve further into
this path and achieve 8-bit fixed-point representation leveraging SR. Zamirai et al. focus
on 16-bit floating-point FPU training and utilize SR to avoid RNE stagnation. The
authors obtain equivalent validation accuracy to that of 32-bit across seven deep learning
tasks. Na et al.|8] implement stochastic rounding hardware targeting limited-numerical-
precision recurrent neural network training. Their results show that SR combined with
dynamic fixed-point boosts hardware speed by 4.7x and decreases energy per task by
4.55x in comparison to floating-point. As we see, former studies rely on software libraries
to emulate behaviors of stochastic rounding. Up to now, the few chips released, including
Intel Loihi and the new Graphcore IPU, are closed-source. Our project makes the first
attempt to realize open-source floating-point arithmetic hardware supporting stochastic
rounding.

1.3. Our Contributions

1.3.1. Implementation of the Stochastic Rounding Extension

During implementation, we develop the Round by Stochastic Rounding (RSR) mode,
add new parameters to increase its controllability, and adapt the rounding unit to the
SDOTP module.

1.3.2. Functional Verification

Regarding functional verification, we first build our own golden model in Python for
sanity checks. Additionally, we adopt another existing golden model implemented in
Julia[9]. Then, we verify the hardware results leveraging these two models.

1. Introduction

1.3.3. Performance Assessment

To assess RSR performance, we go through HDL simulations to test the newly developed
SDOTP unit, evaluate its performance against the original SDOTP unit, and compare
the effectiveness of the RSR mode with other rounding modes, especially RNE.

1.3.4. Tapeout Adaptations

In this part of the project, we first integrate our FPU with stochastic rounding extension
to the PULPissimo microcontroller, then adapt back-end scripts for the Eclipse chip
tapeout to TSMC65 technology. Our tapeout contributions include RTL integration,
synthesis, regression tests (C test), and the physical design (Floorplan, place and route,
signoff).

Chapter

Algorithm

2.1. Existing Stochastic Rounding Algorithms

Stochastic rounding (SR) is a rounding method that randomly maps a higher precision
real number z to one of the two nearest values in a lower and finite precision system.
The probability of rounding to either of these values is inversely proportional to the their
distance to z, shown as follows[10]:

) [=], with probability q(x)
fa) = |z], with probability 1 - q(x)

where ¢(z) = [i{ _[@ T Thus, by encoding the discarded bits into this probability, the

expectation of the rounding result f(z) equals to z, namely, E[f(z)] = .

One approach to implement the SR algorithm is to generate a random number in the
same position as the bits to be rounded, add it to the original value, then round the sum
toward zero. This method is applied in the Julia[9] and QPyTorch[I1] implementation.

Another approach is shown in Ref [I0]. In this method, we again generate a random
number, but compare it to the original value instead of addition, then according to the
comparison outcome, we choose either to round up or down. As comparisons are less area-
and time-consuming than additions in the hardware perspective, this second approach is
clearly a better choice for hardware implementation.

2. Algorithm
2.2. Our Hardware SR Algorithm

As mentioned in previous section[2.1] we follow the second approach to implement our SR
algorithm. This rounding algorithm takes raw results in IEEE-754 format from previous
calculations, round them by SR, and outputs the rounded results in our target format.

The most relevant part of the input is the mantissa bits. For simplicity, we assume
the exponent part is correctly biased and the post-rounding checks are omitted here. We
assume the input mantissa is N-bit long, and it needs to be rounded to m bits (apparently,
m < N). The extra (N — m) bits would be the information for us to perform rounding.
A parameter introduced here is the "precision of SR", p, because it’s not necessary to
take all the extra bits to perform the rounding and we will use the first p bits in the
extra bits (we call them rounding bits) to help us do the rounding.

To determine which direction (round toward/away from zero, RTZ/RA) to round, we
compare this rounding bits with a p-bit random number. The random number should
be evenly distributed in range [0,2P — 1]. If this random number is smaller, we need to
round away from zero and otherwise round toward zero. Intuitively, if the rounding bits
is big, it’s easier to satisfy the RA condition which means the absolute value of the
rounded number will likely be bigger than the original one since the original number is
closer to it. And this make sure the expectation value of the rounding results equals the
value before rounding. This algorithm is shown here [I]

2. Algorithm

Algorithm 1: stochastic rounding

input : Pre-round result consists of sign, correctly biased exponent and
mantissa bits before round(implicit bit has already been discarded
before this step): {pre round sign, pre round exp,
pre_round man}

output : Rounded result: {rounded _sign, rounded abs}

parameters: m, number of mantissa bits in the rounded results
p, precision for SR, number of bits in matissa used for SR

pre_round abs < {pre round exp, pre _round man|N -: m|};

/* Use the next p bits from mantissa to determine roundup = 0 or 1. If
p is set too large that there’s not enough bits in the mantissa, we
will pad the LSBs of rounding_bits to be Os to make sure the
implementation still works. (Not shown here for simplicity) */

2 rounding_bits < pre_round man|N-m -: p|;
3 random number <— Random gen(length = p);
4 if random_number < rounding bits then

// random number is smaller, we round up
roundup = 1;

6 else

// random number is equal or bigger, we round down
7 roundup = 0;
8 end

9 rounded sign ¢— pre round sign;

10

rounded abs < pre round abs + roundup;

Chapter

Hardware Architecture

3.1. Basic Setup

For the first step, we extend the five rounding modes specified in RISC-V ISA with our
new rounding mode, round by stochastic rounding (RSR), and implement our rounding
algorithm [I] in the rounding unit from fpnew. All rounding modes support by the new
rounding unit are shown in table

Table 3.1.: Rounding modes supported by the new rounding unit

Round Mode Mnemonic Source Meaning

000 RNE RISC-V Round to Nearest, ties to Even
001 RTZ RISC-V Round towards Zero
010 RDN RISC-V Round Down (towards —oo)
011 RUP RISC-V Round Up (towards +00)
100 RMM RISC-V Round to Nearest, ties to Max Magnitude
101 RSR Extension Round by Stochastic Rounding
others — — invalid

3.2. Implementation and Parameters

After implementing of our algorithm in the rounding unit, we integrate the rounding
unit to the SDOTP module in the FPU. In the old SDOTP module, the rounding unit
does not accept the whole pre-round FP number, the extra bits are first compressed to
so called round-sticky bits before being passed to the rounding unit. Round-sticky bits

3. Hardware Architecture

indicate the position of the un-rounded value related to the two closest FP numbers:
closer to the smaller one, closer to the bigger one or exactly in the middle. Depending
on the rounding mode, we make different rounding decisions (roundup = 0 or 1). The
output of the rounding unit is the rounded results.

In the new rounding mode, RSR, the rounding decision are made by the comparison
result between the rounding_bits and a random numbeyI} so we add a new input port
to accept this input. Therefore, the interface between the rounding unit and the SDOTP
module also needs to be modified to adapt this change.

Our final rounding unit and its interface in the SDOTP module are shown in Figure
The dashed lines indicate the old modules and the colored areas with solid lines are our
modifications. The final mantissa after the calculation is 2p dst + p_src + 4 bits long,
where p _dst and p_src stand for the total bits in the mantissa including the implicit bit
for the destination and source FP formats. The first bit (MSB) is the implicit bit and
will not appear in the final result. Start from the second bit, the next p dst — 1 bits are
the mantissa bits before rounding. The rest part of the result will be rounded.

We add a new slice for the RSR mode. This step introduce two new parameters, p_rsr
and rsr_extra_bits in the hardware. As mentioned before, p _rsr is the precision for
SR, which means the number of bits that we use to perform SR. rsr _extra_bits will add
extra bits in in the final mantissa and previous results. This parameter is set just in case
we need a more precise final mantissa for SR. We already have a long mantissa compared
to the final output and this parameter will cause a big area overhead for the SDOTP
unit since it increases the size of every intermediate results. And most importantly, in
the later chapters we will show p_rsr = 12 is enough for our applications. So it will be
set to 0 by default and this parameter is not shown in the figure.

3.3. Pseudo-random Number Generator

The pseudo random numbers in the algorithm is generated by a linear feedback shift
register(LFSR). We choose the LFSR from the common cells for PULP platform. It has
two parameters: LfsrWidth and CipherLayers. LfsrWidth is the internal length of
the LFSR. Once you have chosen the p_rsr, the output width of the LFSR is fixed, but
you still have the freedom to choose the internal length. This parameter can be set from
p_rsrto 64. CipherLayers is the number of cipher layers you want to use at the output.
The cipher layers are from PRESENT [I12], and are used here to break the shift pattern
of the LFSR. The cipher layers are only available when the internal length of the LFSR
is 64 bits. To save power on the chip, the LESR is only enabled when the round mode is
RSR. The state of LFSR will not change when you are not using SDOTP unit with RSR
mode.

3. Hardware Architecture

final mantissa ! 2p_dst+p_src+4 |
_______________________ l______J
| el B e N i B }_______I |
slice 110} pdst-l |1, p_dst+p_src+3 p_rsr

implicit bit

mantissa bits

[}
. r====-7 Il_ _____ Il— _____ | r—-——-- | r_____';
sien E:> i RN :i RTZ ,. RDN !i RU RMM ! LFSR
[D | I B] -
exponent D r_’ J> H
ool co,]
round mode D RSR
] — = ———

! rounding deC|5|0n [

-

1

1

: perform rounding | :
1

l

1

1

rounded result

Figure 3.1.: Hardware architecture of the rounding unit and its interface with SDOTP
module

Chapter

Verification and Results

4.1. Possible Configurations in the Hardware and Cases
Tested

There are several things that may influence the final results and we need to test each com-
bination of them to get the hardware architecture with the best results. Since the SDOTP
module supports different instructions and is capable of trans-precision computing, it’s
obvious we need to test different instructions and go through the possible precision set-
tings it supports. In the test, the two configuration parameters of the SDOTP module are
set to: SrcDotpFpFmtConfig = 6’6001 111, DstDotpFpFmtConfig = 6'b101 111,
which means the inputs can be set to any formats shorter or equal to FP16 and out-
put can be set to different formats shorter or equal to FP32. We tested the VSUM
and SDOTP instructions. For the two operations, we tested different possible input and
output formats from FP8 to FP32.

Since this hardware is for general usage, we set up three different possible input distri-
butions to test the performance of hardware in different situations: standard Gaussian
distribution, N (0, 1), uniform distribution in region (—1,1), U(—1, 1), and uniform distri-
bution in region [0,1), U(0,1). For the VSUM instruction, there are 3 different precision
settings and we test each of them in these 3 different input distributions. For the SDOTP
operation, there are 2 different precision settings and we tested both of them in the first
two input distributions. Table shows the different cases we have tested.

4.2. Input Generation

As mentioned in the previous section, we use values sampled from different distributions
as stimuli to the hardware. The input data is generated in the following steps. First,

10

4. Verification and Results

Table 4.1.: Different cases tested

Instruction Input distribution Input FP format Output FP format

FP8 FP8
VSUM N(0,1),U(-1,1),U(0,1) FP16 FP16
FP32 FP32
FP8 FP16
SDOTP N(0,1),U(-1,1) P16 P32

generate the random inputs in the target distribution by Python’s package, random. You
will get the random number in FP64, Python’s default FP format. Then, convert it to
it’s binary format (a string consisting of 0’ and ’1’), bias the exponent in the target
format and cut all the extra bits in mantissa(or in other words, round the FP64 number
to your target format by RTZ). The generated inputs are shown in Figure and

Distribution of input data Distribution of input data Distribution of input data

¥ 8 38 ¥

100

Counts.
- EEEEEEZE

(]

=100 =075 =050 =025 000 025 050 075 100
Value

Figure 4.1.: Input distributions of FP16. Left to right: U(0,1),U(-1,1), N(0, 1).

Distribution of input data Distribution of input data

-075 -050 -025 000 025 050 075
Vakuse

Figure 4.2.: Input distributions of FP8. Left to right: U(—1,1), N(0,1)

4.3. Golden models

To assess the performance of SR, we introduce two software golden models for low-
precision FP formats and SR. The first model in Python is our novel contribution, the
other is an open-source model written in Julia.

11

4. Verification and Results

4.3.1. In Python

To provide a reference for our hardware implementation and get a more direct idea of the
SR performance, we build our own golden model in Python. We integrate useful functions
to this model, like format converters that enable the conversion between floating-point
and its corresponding binary string. It is used to translate between human-readable FP
values and input/output of the hardware obtained from the testbench, and also some
software simulation to give us an idea of what we should expect from RSR.

We generate 10,000 random FP32 values sampled from a uniform distribution between 0
and 1, then in each step, we accumulate a fresh input to the current sum (sum is initialized
to 0), and round the newly acquired sum to the target precision, FP8 or FP16. During
simulation, we repeat this process for several working regimes, including FP32, which
serves as the ground truth. In addition, we test the following four combinations of formats
and rounding modes: FPSRSR, FPSRNE, FP16RSR, and FP16RNE. This operation is
similar to the process of VSUM in the FPU, where three numbers are added instead of
two. Results are shown in [4.3] and offer intuition on RSR and RNE behaviors.

5000 | — FP32
FPS8RSR
—— FPSRNE
s 4000 9 _ rp16RsR
E —— FP16RNE
>
> 3000
@
©
E
E 2000 —
3
g
P
1000 —
0 —
I I I 1 1 I
0 2000 4000 6000 8000 10000

Numbers added
Figure 4.3.: Cross comparison between various operation modes in Python

As we can see, RNE for FP8 and FP16 both saturate after a certain point (FP8 at 8 and
FP16 at 2046), but FP8 has a much lower tolerance of sum-to-addend difference. In other
words, when the difference between the accumulated sum and the addend becomes too
significant, RNE can no longer perceive the small addend, and thus, the sum saturates at
a fixed value. As FP8 has a smaller number of mantissa bits, its saturation point naturally
comes much earlier than FP16. RSR, on the other hand, maintains its accuracy to some
extent thanks to its probability characteristics. It does not have any saturation point
and keeps up with the accumulation result. In the FP8 case, RSR has an obvious better
performance compared to RNE. Due to the highly-quantized nature of FP8, we can see

12

4. Verification and Results

clearly its stepped fluctuations around ground truth. For FP16, RSR behavior is almost
indiscernible from the ground truth.

6000
5000 -

5000 -
4000 —
4000 -
3000 —
3000 -

2000 ~
2000

Accumulated value
Accumulated value

1000 -

FP32 o
T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Numbers added Numbers added

1000 —

Figure 4.4.: mean and variance of RSR over 10 runs, left: FPS8, right: FP16

In 4] we observe enhanced performances for both FP8 and FP16 when RSR results are
averaged over 10 runs. This behavior is also dominated by the probability property of
stochastic rounding, as discussed in[2.1} its mean value closes to ground truth after more
runs.

4.3.2. In Julia

An open source implementation of stochastic rounding written in Julia [9] is also taken as
a golden model in this project. We first use Python to generate multiple lists of random
input with different precision and probability distribution. To keep maximum consistency
with results in hardware simulation, we apply the same inputs as in [I.2] and assume the
exact process as in hardware. To be specific, we dot multiply adjacent values, accumulate
the product, and round the sum with SR. Finally, we evaluate the performance of SR by
examining the accumulated absolute value of the error. This overall process is described
in Algorithm [2 In addition, we also check that the two software models in Python and
Julia give the same results.

As the previous golden model in Python already offers intuition on SR, performance, it is
sufficient to only do sanity checks on the VSUM mode with selective input arrays using
this Julia model. Representative results are shown in [4.5] please refer to Appendix [A] for
more data.

We can see that when accumulating floating point numbers with possibility to be either
positive or negative, absolute error of RSR is much farther away from zero compared to
RNE, and RNE does not saturate. This behavior of RSR and RNE matches hardware
simulation results in Section .4.1]

13

4. Verification and Results

Algorithm 2: Golden model

input : Generated random arrays a.
Precision formats: FP8, FP16, FP32.
Probability distribution: Gaussian distribution N (0, 1), uniform
distribution U(0, 1), uniform distribution U(—1,1).
output : Step-wise accumulation result S with target precision, accurate
accumulation result R with FP64 precision, absolute errors abs err,
average of RSR absolute errors across n runs avg _abs_err.
Parameter: Number of input values N, number of RSR runs n.

1 Convert the lower precision array a to a FP64 array b.

2 SDOTP: FP8 — FP16, FP16 — FP32.

N = 40000, S[1] = 0,
Sli+ 1] = al4i — 3] * a[4i — 2] + a[4i — 1] * a[4i] 4+ S[i], for i € (1,10000), rounded to
target precision by RSR or RNE.
R[i + 1] = b[4i — 3] * b[4i — 2] + b[4i — 1] * b[4i] + R][i], for i € (1,10000).

VSUM: FP8 — FP8, FP16 — FP16, FP32 — FP32.
N = 20000, S[1] =0,
S[i + 1] = a[2i — 1] + a[2i] + S[i], for ¢ € (1,10000), rounded to target precision by
RSR or RNE.
Rli + 1] = b[2i — 1] + b[24] + R[], for i € (1,10000).

abs__errli] = |R][i] — S[i]|, for both RNE and RSR.

Exclusively for RSR, run step 2/3 and 4 for n times, usually n = 1,10, 100 or 1000,
take the average across abs_err[i] to get avg abs _err|i].

14

4. Verification and Results

Abs Err VSUM_16_16 Abs Err VSUM_32_32
NM,, L~ e m'\'v -----»"'WJ*WN ~.\#N| |J|

’ | It
IV U I v

000 | Im"' - | Iﬁu\w.fmﬁuﬂf)\.irlﬂf"/ V u . Iﬁ.‘ﬁ "u,,,w%'

[} 2500 5000 7500 10000 [} 2500 5000 7500 10000

Figure 4.5.: absolute error of RSR and RNE in Julia, left: VSUM FP16 — FP16 with
U(—1,1) input, right: VSUM FP32 — FP32 with N(0, 1) input

4.4. Functional Verification of SR

Figure [4.6] illustrates the testbench setup for the functional verification of SR. After
testing our parameters’ compatibility with the old SDOTP module and SR unit’s proper
functionality, we assess the performance of SR in different cases in Table {1} First,
we generate random inputs as described in Section then feed them (FP8 or FP16
representable numbers) into the golden model to receive benchmark results in double
precision(FP64). To test the hardware functionality, we need to convert the generated
inputs to binary formats, execute the SDOTP operations, output the results, and back-
convert the results to IEEE FP format. Similar to the algorithm described in [2] our
testbench wrapper for SDOTP works as follows: op determines the operation mode,
VSUM or SDOTP. If op is SDOTP, is_ first = 1 at the start of our testing, operand e
takes 0 as input, operands a, b, ¢, d read in the first four values of the input file. After
arithmetic calculations of SDOTP, specifically, a * b+ ¢ * d + e, the result is temporarily
stored inside a flip-flop, fed back to the multiplexer as the next input for operand e, and
outputted in the next clock cycle. As the process advances, operands a, b, ¢, d continue
to read in from the input file until reaching the end, and in this way, we implement the
accumulation of dot products. If op is VSUM, we set operands b and d to 1, and simply
read in two inputs at a time for operand a and ¢, b and d will be bypassed and a +c+ e
is computed.

As previous sections and introduced, there are four parameters inside the SDOTP
module: extra bits in the intermediate results rsr_extra bits, which is 0 by default,
RSR precision p_rsr, LFSR internal width LfsrWidth, and number of cipherLayers
Clipher Layers.

In this chapter, we will show the results in different implementations and find the best
p_rsr, LfsrWidth and CipherLayers for different input and output formats and oper-
ations.

15

4. Verification and Results

SDOTP module

| Compare 1
L T T 1
ittt leleiels f----- | 1
1 1
Results in
Generate ; Do the operation in double : Rfesults
Inputs 3 software, FP64 - ! rom
| precision : hardware
1 1
f-ome Sy,
1
i | Converter Golden Model Converter |1
1
b o o o o e e o o e —— l— —— !
1
Testbench
Input Files Output Files
in Binary pmmmmmmmmmmmmmmmmmmmm oo . in Binary
Formats 1 : Formats
! I
1]
1
) B :
1 f \
N i
is_first 1 Parameters: :
operand_d s ExtraBits = 0 I
0a]
operand_c : RsrPrecision +—>result
operand b ! LfsrwWidth Ij 1
P - 1 CipherlLayers :
operand_a : I
1 1
operation : 1
1
]

4.4.1.

The test started with the format in between, FP16. This format is not super short (FP8)

VSUM, FP16 Input, FP16 Output

tb wrapper for SDOTP:

Figure 4.6.: Functional verification setup.

or very precise (FP32). We will show all the detailed results in this section.

4.4.1.1. U(0,1)

For the first step, we set some reasonable values to the parameters and compare RSR
with RNE, p_rsr is set to 12 bits, and we use 64-bit LFSR with 3 cipherlayers to break

the shift pattern.

Figure shows the results when input is a uniform distribution in [0,1). Top left

corner shows the accumulated value in 10000 consecutive VSUM operations obtained from
software golden model in FP64 (blue line), hardware simulation with different rounding

16

4. Verification and Results

Comparision between different rounding modes Mean value of multiple times RSR
10000 | — FPB4 — RSR, 1 times
FP16 RNE wo 4 RSR, 10 times
—— FP16RSR — RSR, 100 times |
8000
RSR. 1000 times | ﬂ

6000 =

4000 o

Accumulated value

2000 -

o -

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of VSUM operations MNumber of VSUM operations
Variance of multiple times RSR Mean and variance of multiple times RSR

175 o

— RSR, 10 times RNE

i L A
— RASA, 100 times 40 - RSR, 1 times ’f\‘ M SN
— RSR, 1000 times — RSR, 10 times f \a \" \
/ RSR, 100 times A v \
125 y 20) Y A o
RSR, 1000 times : \F\vv‘.‘-..u' f
_ 100 _ . £ Ny
£ 2
& 75 o &
50 o

o 2000 4000 6000 8000 10000 1000 2000 3000 4000
Number of VSUM operations Number of VSUM operations

o

Figure 4.7.: Results of VSUM, U(0, 1) iutput. Top left: accumulated value over 10000
VSUM. Top right: average error of RSR compared to FP64. Bottom left:
standard deviation of error. Bottom right: RSR’s error disrtibution com-
pared to RNE mode before it stagnated.

modes, RNE(yellow line) and RSR(blue line). In this input distribution, the adds are
in only one direction, the RNE results get saturated after it reaches 4096. This result
is consistent with our previous expectations: when you add a big number to a small
number in RNE mode, the big number will swamp the small number and there would be
no changes in the result. For the RSR result, since it’s mechanism is differnt from RNE,
it will not stagnate but wiggle around the FP64 value.

Due to RSR’s random nature, every time we will obtain a different trace of the accu-
mulated value. We calculated the average value and standard deviation of the results
obtained by multiple runs of RSR after the same number of operations (which means
LFSR starts at different state in hardware simulation). The top right plot shows the
average error compared to the FP64 results and the bottom left plot shows the standard
deviation of the error. As we can see, the average error is significantly smaller if we
average the results more than 100 times. The standard deviation of the error will not
change if we average over multiple runs.

The bottom right plot in Figure [I.7] compares those errors with the error of RNE mode
before RNE stagnated. The shaded area corresponds to the average value plus/minus

17

4. Verification and Results

standard deviation when we do the statistics over 100 times RSR results. Although the
average value of RSR is quite close to the FP64 results, it is not better than the RNE
modes if we have a look at it’s distributions. But in the region where RNE stagnated

(the straight line in the rightmost part in the plot), the error of the RNE mode explodes
and RSR is definitely better than RNE.

Absolute value of error Standard deviation of Abs(error)
160 120000

4 RNE —— RSR 6 bits RNE /
— RSRebits 140 o — RSR 12 bits 100000 4 —— RSR 6 bits /

300 | — RSR12bits RSR 16 bits —— RSR 12 bits

120 4 RSk 24 bits / RSR 16 bits

100 4 80000 — RSR 24 bits //

Mean squared error

80 4 S 60000 o //
kS

i o
40000
4 40 4
i s 20000 o
o] BV od o o
T T

T T T T T T T T T T
o 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of VSUM operations.

Value

T T T T T T
o 2000 4000 6000 8000 10000
Number of VSUM operations Number of VSUM operations

Figure 4.8.: Results of varying p_rsr. Left to right: average of abs(error) of RNE and
different precision’s RSR, standard deviation of abs(error), mean squared
error

To analyze the error in detail and find the best p rsr, we also calculate the mean and
standard deviation for error’s absolute value, and also the mean squared error. The
results are shown in Figure This shows clearly RSR has a bigger error compared to
RNE mode in the "normal" region of RNE. And for the p_rsr, 6 bits has bigger error
and standard deviation compared to 12 bits or more and there’s no difference between
12 bits, 16 bits and 24 bits. Therefore, to save the area in the hardware, we will use
p_rsr =12 for this case.

Absolute value of error Standard deviation of Abs(error) Mean squared error
200

60000
RNE 120 4 — 12-DitLFSR Mo RNE
75 | — 120biLpsR —— 32.bi / —— 12.bi
1 v 32.bit LFSR s o 12-bit LFSR

100 - — 64-bitLFSR — 32bitLFSR
150 64.bit LFSR

_ G4-bitLFSR+ —— 64-bit LFSR v

125 3 cipher layers

cipher layers 40000 64-bit LFSR + o
" 3cipherlayers

™ 8 30000 - /f
k]
20000 -
10000 M

T T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0
Number of VSUM operations

3 100 o
75 -
50 -

25 o

o

T T T T T
2000 4000 6000 8000 10000
Number of VSUM operations. Number of VSUM operations

Figure 4.9.: Results of varying LFSR config. Left to right: average of abs(error) of RNE
and RSR, standard deviation of abs(error), mean squared error

The next step is to find the influence of different configurations in the LFSR. So far we
used a complicated config: 64 bits internal length and 3 cipherlayers to break the shift
pattern. We fix p_rsr = 12, tested results from 12-bit, 32-bit, 64-bit LFSR and 64-bit
LESR with 3 cipherlayers. In this case, the 12-bit LFSR has the best performance: it
has the smallest error and standard deviation. It’s quite interesting that the complicate
configured LFSR doesn’t improve the performance of the rounding results.

To give a more intuitive picture of this, we examined the output of the LFSR in different
configurations. We fix the MSB of LFSR output correspond to 27!, so the output can

18

4. Verification and Results

be mapped to a number in region [0,1). We calculated the average value of the first 1
million outputs from the LFSRs, the results are shown in Figure [4.10

Comparison between different LFSRs
0.0010 T T

0.0008 - .

0.0006 |-

0.0004

Abs(mean - 0.5)

0.0002

0.0000 X

.
12 bits 24 bits 32 bits 64 bits 64 bits +
3 cipher layers

LFSR configurations

Figure 4.10.: Average value of the first 1 million outputs from the LFSR, values are
obtained by setting the MSB of LFSR output to 27!

The results show the 12-bit LFSR has the output averaged closest to 0.5. The 12-bit
LFSR has go through all of its possible states (2'2—1 = 4095) in this process, so it’s more
"uniform". And in the SR applications we only need a uniformly distributed random
number, that’s why the simplest LFSR has the best performance.

4.4.1.2. U(-1,1) and N(0,1)

Mean value of multiple times RSR Variance of multiple times RSR Mean and variance of multiple times RSR

499 RNE M r 4 — Rk 10t
I A P, 30 imes
RSR, 1 times j g". w —— RSR, 100 times M/W‘

4 - — RSB, 10times 25 - RSR, 1000 times
RSR, 100 times .,f'/
a9 RSR, 1000 times W‘ W oo
Y .0 A
2 A 5 -
e o 4
A 1

T T T T T T T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of VSUM operations Number of VSUM operations Number of VSUM operations

RNE MAAPN

| — RsR. 1 times f WA
— RSR, 10 times

RSR. 100 times

/
/
SR, 1000 tmes Ir,.ﬂ\r"‘

Ermor
Ermor

Figure 4.11.: Results of VSUM, U(—1,1) input. Left to right: average error of RSR
compared to FP64, standard deviation of error, RSR’s error disrtibution
compared to RNE.

Figure shows the results when input is a uniform distribution in (-1,1). The results
are similar to the U(0, 1) distribution. For multiple times RSR, the average error is
smaller than RNE when you go to more 100 times and the standard deviation is also
stable if you do RSR more than 100 times. In this case, the RNE mode will not stagnate
and RSR is not better than RNE. If you look at the one-shot trace (green line) randomly
chosen from the 1000 traces, it goes really far away from the correct results.

19

4. Verification and Results

FP16 U(-1,1)

14 H

Absolute value of error Absolute value of error

RNE ! 14 - RNE]

— RSR 6 bits — 12-bit LFSR /

1.2 4 — RsR12 bits 12 o — 32-bitLFsR /J
—— 64-bit LFSR

—— RSR16 bits
1.0 o — RSR 24 bits 1.0 - ___ 64-bitLFSR +
3 cipher layers

0.8

Value

0.6 -

0.4

0.2 4

M

T T T
0 2000 4000 6000 3000 10000 0 2000 4000 6000 3000 IUUUO

Number of VSUM operations Number of VSUM operations
FP16 N(0,1)

RNE

1.0 = — RSR6 bits

— RSR 12 bits
RSR 16 bits

0.8 = — RsR 24 bits

. 1]
02
0.0 P\(Ay V ‘“‘ \"JHW QI hl "‘ I “/ *l“v' ‘«M

Absolute value of error Absolute value of error

RNE

e
12 4 — 12bitLFsR
— 32bit LFSR
10 64-bit LFSR

64-bit LFSR +
3 cipher layers

M
W o “#M\'#f“\w

P

T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of VSUM operations Number of VSUM operations

Figure 4.12.: Results of VSUM, U(—1,1) and N(0,1) input. Each line: left, average of
abs(error) of RNE and RSR using 64-bit LFSR with 3 cipherlayers, right,
average of abs(error) when fixing p_rsr = 12 and varying the configurations

of LFSR

Figure shows the results when input is an uniform distribution in (-1,1) (first line)
and standard Gaussian distribution (second line). The standard deviation are not shown
here because they are not influenced by the parameters used in the plots. In these
cases, p_rsr doesn’t influence the results of RSR, so we will choose p_rsr = 12 for
implementation for this specific instruction and format in hardware according to previous
results in U(0,1). Plots on the right show the mean abs(error) when we fix p_rsr =12
and vary the configurations of LFSR. In these cases, again the 12-bit LFSR has the best
performance.

4.4.1.3. Comparison with other rounding modes

Now we have our final parameter set: p_rsr = 12, with 12-bit LFSR (no cipherlayers).
We can compare the performance with other rounding modes. To be fare to the existing
rounding modes, we will only compare the cases when the input distributions are U(—1, 1)
and N(0,1). The results are shown in Figure and Figure In the legend, p is
the precision of FP16, which is 11 bits. We can list the results from worst performance

20

4. Verification and Results

to higher performance: RTZ, RDN, RUP < RSR 1 time < RMM < RNE ~ RSR 10
times < RSR 100 times.

FP16 U(-1,1)

Comparision between different rounding modes Comparision between different rounding modes
04 2
RNE
g —200 o — R1Z 14 .
3 N =
3 -a00 uy 5 =~ TNy A
2 RUM B 0 —elecny M/ \ RSR 0.5p Ltimes
H RSROSpirls @ \ ;| — nsr10p rtimes
5 _eoo —— RSRLOpHsnls L bt o 1| — msrisp rumes
£ RSR 1.5p Ifsr16 - |
Fpea Ml
800 -2 LY. WAL |
Wl
T T T T T T T T T T T T
0 2000 4000 5000 5000 10000 o 2000 4000 6000 8000 10000
Number of VUM aperations Number of VSUM operations
Comparision between different rounding modes Comparision between different rounding modes
24
2
24
ANE 14 ANE
N RMM R avy
5 o RSR0.5p 10times B ASR 0.5p 100times
@ — RR10plotimes W o] agmem— et) | — R 1.0p 100tmes
RSR 1.5p 10times TR ! RSR 1.5p 100times.
-1 4 M
p—
ad HL’\W’%
-
ad
T T T T T T T T T T T
0 2000 4000 5000 8000 10000 0 2000 4000 6000 8000 10000
Number of USUM operations Nummber of VSUM operations

Figure 4.13.: Comparisons between different rounding modes and multiple times of RSR
with different p_rsr

4.4.2. Other operations and formats

Then we move to FP8 and FP32, and also SDOTP instruction with different formats.
We perform the same analysis for all of them. The results from these different cases are
quite similar, so we just give the conclusion directly here and put all the results in the

Appendix [A]

For the p_rsr, no matter which formats or instructions, p_rsr bigger than 12 is nec-
essary. For LFSR, in most of the cases there’s no differences between different LFSR
configurations. So for saving area and energy in hardware, we will just implement the
simplest LFSR: 12-bit LFSR without cipherlayers.

21

4. Verification and Results

Comparision between different rounding modes

500
250 -]
RNE
g 0+ — A1z
s —— RON
3 —— RUP
2 500 — RMM
: - RSR 0.5 Ifsr16
3 150 —— RSR10pifsri6
< RSR 1.5p Ifsr16
-1000 — FP6a
~1250
T T T T T T
o 2000 4000 6000 8000 10000
Number of VSUM operations
Comparision between different rounding modes
RNE
— RuM

T
4000 6000
Number of VSUM operations

RSR 0.5p 10times
—— RSR1.0p 10times
RSR 1.5p 10times.

Comparision between different rounding modes

o\

1
Py
/“U Moo s

Number of VSUM operations

Comparision between different rounding modes.

-05
-10 4

15 4

20 4

T T T
4000 6000
Number of VSUM operations.

RSR 0.5p Ltimes

—— RSR1.0p Ltimes
—— RSR 1.5p ltimes

RNE

RSR 0.5p 100times

—— RSR 1.0p 100times

RSR 1.5p 100times

Figure 4.14.: Comparisons between different rounding modes and multiple times

with different p_rsr

22

of RSR

4. Verification and Results

4.5. Implementation and AT analysis

As shown in the previous section, you can’t get any improvement on the performance
for p_rsr > 12 for all the formats. And there doesn’t exist a configuration of LFSR is
generally better than others. To save area on the hardware, we choose p_rsr = 12 and
a 12-bit LFSR in the actual hardware.

To analyze the impact to the SDOTP unit by this change, we perform synthesis using
Synopsys in TSMC 65nm technology. We use the worst-case corner (1.08V and 125°C)
and obtain the area-timing (AT) relations for old and new SDOTP units with different
number of pipeline registers. The results are shown in Figure There is no influence
on timing and the change in area is smaller than 2 kGE (smaller than 5% at 5ns, details

are shown in Appendix |[A]). The extension for RSR only add a small overhead to the
existing system.

Comparisons of SDOTP unit w/o RSR with 0 regs

Comparisons of SDOTP unit w/o RSR with 1 regs

28 T T T 28 T
-%- with RSR -%- with RSR
26 x | =%~ without RSR | 26 | =%~ without RSR ||
% T T =
X
24 . 24 * g
X
2) . 2 ’(\ 1
w w (N
2 20 1 2 20 1
< AN < -5\
18 |- Bl 1 18 |- 1
16 - S, 4 16 X 1
b S “
. —t Hoin
14 o 14 B E—— 1
T Mg w
12 L i | i | 1 | 12 | 1 i 1 L
8 9 10 11 12 13 14 15 16 4 6 8 10 12 14 16
T(periods - slack) [ns] T(periods - slack) [ns]
Comparisons of SDOTP unit w/o RSR with 2 regs Comparisons of SDOTP unit w/o RSR with 3 regs
28 ! - 28 ; . . T ! .
-%- with RSR % -%- with RSR
26 + | -%- without RSR | 26 + | | -%- without RSR |
|7 WRNORR RoR| P |7 WRNORR RoR|
\
A
24 f 1 24 f .
22 x‘\‘\ 1 2 :f 1
) \)
< ?“ <« \
18 | N 1 18 | 5 1
16 X 1 16 R o e ¥ 1
| SN
________________________ . R o R S
14 % R 14 % % o
- ==
12 1 I I I | i 12 1 I I I I i
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

T(periods - slack) [ns] T(periods - slack) [ns]

Figure 4.15.: Comparison of SDOTP unit with and without RSR implementation

23

Chapter

Conclusion and Future Work

In this project, we implement our SR algorithm in the rounding unit, and integrate it
to the SDOTP module of the FPU by modifying the interface in SDOTP module. Then
we verify its functionality and evaluate its performance by comparing the accumulation
results to our software golden model in double precision. By testing our SR extension
in different instructions and FP formats, we have proven that to reach the optimal
performance (smallest error compared to FP64 results), you need at least 12 bits to
perform SR with any arbitrary LFSR configuration. As a result, the final implementation
in hardware uses 12 bits for rounding and a simplest LFSR which has 12-bit length
internally. The AT analysis shows that this modification in SDOTP unit only adds a
small (<5%) overhead in area. Finally, to test the impact of this extension in a real
chip, we integrate the new FPU with SR extension to a microcontroller architecture,
pulpissimo, and finish the tapeout adaptions.

This is the first open-source hardware with SR extension. By testing all the different
possible configurations in hardware intensively, we can make sure our final implemen-
tation has the best SR performance and at the same time, the minimal impact on the
existing system.

The performance of SR varies in different application scenarios. First, if you rely more
on the statistical behavior of the results, SR is definitely more advantageous. We have
shown that if results are averaged over more than 10 times, SR would give a smaller error
compares to RNE. Second, if you need some small adjustments to some relatively large
value, SR would also be helpful. In this case, stagnation is likely to happen in RNE but
SR is intrinsically immune to that. But in other cases, especially when you are not in
the region where RNE stagnates, we have shown RSR has larger error compare to RNE
mode and RNE would be a better choice. This is easy to understand, suppose you have a
number, 0.2. In RNE case, it will be round to 0. But in SR case, you have 0.2 possibility
to be rounded to 1, which has an error of 0.8. In cases where statistical properties are

24

5. Conclusion and Future Work

important, you should use SR because the expection value of this rounding is 0.2, and
you have "no information loss". But if you only focus on one operation, the expentation
value of abs(error) would be 0.2 x 0.8 + 0.8 x 0.2 = 0.36, bigger than 0.2 in RNE case.
By encoding the rounded bits in the probability, SR enhances the performance in cases
where statistical information is important or results suffer from stagnation in RNE. But
the price you pay is that you have some probability to go to a value with larger error,
and this makes SR not a good choice in other cases.

One way to further improve our SR unit is to make application-specific adaptations, for
example, typical deep learning tasks, scientific computing, quantum computing, etc. Via
parameter tuning, algorithm adjustment or pseudo-random-generator upgrade, we may
promote the result accuracy by a notable amount. Another possible application of SR
is to algorithms that already imply randomness, like Monte Carlo methods, where SR is
hopefully promised more freedom.

Up to now, the results presented in this report are only from simulations. In order to gain
a more comprehensive and realistic evaluation of our stochastic rounding extension (e.g.
power consumption), we need to see through the complete process of back-end design
until chip tapeout. Namely, chip testing will provide the ultimate results.

25

st

Appendix

More Evaluation Results

A.1. VSUM, FPS8 Input, FP8 Output

p_rsr= 12 bits, Ifsr = 64 bits + 3 cipher layers stat. over 100 runs of RSR

Accumulated value Absolute value of error Mean squared error

16
2500
ANE ~ B ANE
i RSR - 1 — rsrabus
Crey —— FP64 - 2000 —— RSR 6 bits
it RSR 12 bits
| s RSR 24 bits
6000 - / 1500 o
2 3 2
£ 4000 2 1000 Eh
RNE
— RSR3bits]
ook —— RSR 6 bits Z
RSR 12 bits
od RSR 24 bits o
T T T T T T T T T T T T T T T T
6000 8000 10000 o 2000 4000 6000 8000 10000 o 2000 4000 5000 8000 10000
Number of VSUM operations Number of VSUM operations Number of VSUM operations.
Absolute value of error Standard deviation of Abs(error) Accumulated value
ANE — RSR3bits ANE
140 4 asnabes /X 200 | — RoRebEs . RSR 12 bies
RSR 6 bits. RSR 12 bits T P64
2001 RSA 12 bits. RSA 24 bits
200 4 RSR 24 bits ool | 200
2 80 o %
H 3 100
2 2 100 2
w 4 3
o4
40 o
2 1 -100
0 o
T r - - . . T T r T - v -200 4 ;
° 2000 4000 000 8000 10000 o 2000 4000 6000 8000 10000 ° 2000 4500 600 8000 20680
Number of VSUM operations Number of VSUM speratians Number of VSUM operatians
Absolute value of error Standard deviation of Abs(error) Mean squared error
RNE -,y RSR 3 bit #0000 7 RNE
g 500 4 m
250 4 — RSR 3 bits s — RSR6 bits 300000 4 —— RSR3bits
— RSR 6 bits / RSR 12 bits — RSR &6 bits
RSR 12 bits / 400 RSR 24 bits a RSR 12 bits
2008 RSR 24 bits 0000 RSR 24 bits
4 200000
5 150 - W"' g 300 g
2 S 3 150000
100 200 r >
3 100000 =
1 i e
50 100 W 50000
0 0 0
T T T T T T T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of VSUM operations Number of VSUM operations. Number of VSUM operations

Figure A.1.: Results of changing parameters for VSUM, FP8 input.

26

A. More Evaluation Results

A.2. VSUM, FP32 Input, FP32 Output

FP32 U(

)
stat. over 100 runs of RSR

Absolute value of error

0,035

RNE
—— RSR 6 bits
0030 4 — RSR12bits
RSA 24 bits

RSR 36 bits.

0.025 o

0.020 o

Value

0.015 4
0.010 =
0.005

0.000 o

T T
o 2000 4000 6000 8000

Number of VSUM operations

FP32 N(0,1)

1e-5 Absolute value of error
RNE
—— RSR 6 bits y
81 — Rsr12bits
RSR 24 bits
—— RSR 36 bits L
6
i
5,
24
04
T T T T T
o 2000 4000 6000 8000 10000
Number of VSUM operations.

FP32 U(-1,1)

Value

Figure A.2.: Results of changing parameters for VSUM, FP32 input.

Absolute value of error

p_rsr=12 bits

Absolute value of error

RNE
—— 24-bit LFSR ,J
0020 4 — 32-bit LFSR J\‘x’

64.Dit LFSR M
G4-DIELFSR + /

RNE
000020 | — RSR 6 bis

—— RSR 12 bits

RSA 24 bits
000015 o — RSR 36 bits
0.00010 -
0.00005 | o ,J\ f W‘\,J
= |

0.00000 W W L'

0.015 3 cipher layers
]
£ 010 -
0.005
0.000 o
T T T T T
o 2000 4000 6000 8000
Number of VSUM operations
Absolute value of error
RNE
0.00012 o —— 24-bit LFSR
—— 32:bit LFSR
0.00010 64-bit LFSR
64-bit LFSR +
0.00008 3 cipher layers
2
£ 0.00006
0.00004 4
0.00002
0.00000
T T T T T
o 2000 4000 6000 8000
Number of VSUM operations
Absolute value of error
- RNE
000020 9 — 24-bic LFSR
—— 32:bit LFSR
64-bit LFSR
0.00015 <| 64-bit LFSR +
3 cipher layers
H
£ 0.00010

0.00005 -

7 M:‘M

T T T
4000 6000 8000
Number of VSUM operations.

'../;-) Ma p{‘ '.whl‘
— W W
0 00 400 600 8000
Number of VSUM operations.

27

A. More Evaluation Results

A.3. SDOTP, FPS8 Input, FP16 Output

stat. over 100 runs of RSR p_rsr =12 bits
Absolute value of error Standard deviation of Abs(error) Absolute value of error
40
06 o — RNE Ll —— RSR 6 bits
— RSR6bits 035 | — RSR12bits
s |] = e
T e . —— RSR 24 bits
0.4 4 025 -
s s s
2 asd 2 020 2
3 03 s ES
015 =
0.2 o
!"W ’“M" 010
o1 ‘P«" ! 0.05
\n ! '
0.0 o 0.00 o
T T T T T T T T T T T T T T T T T
o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of SDOTP operations Number of SDOTP operations Number of SDOTP operations
Absolute value of error Standard deviation of Abs(error) Absolute value of error
RNE | 0.5 -| — RSR6 bits RNE]
12 | — RsR 6 bits | — RSR12bits 12 — 1zbitiesk [
— Rsrazois T Rer1sbits 20t rsR {
10 4 — msnassis (04 o RSRiobEs 10 4 — eesitirsn z
— Rsr24bis W _ etbitipsn s
08 o op d T Sebrerioyers
s 06 = S 06
02
04 04 -
02 o1 0.2
00 00 00 -
T T T T T T T T T T T T T T T
o 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Number of SDOTP operations Number of SDOTP operations Number of SDOTP operations

Figure A.3.: Results of changing parameters for SDOTP, FP8 input.

28

A. More Evaluation Results

A.4. SDOTP, FP16 Input, FP32 Output

Value

stat. over 100 runs of RSR

Value

A [KGE]

p_rsr =12 bits
Absolute value of error Standard deviation of Abs(error) Absolute value of error
0.0005 ANE 000035 < “pep 6 bits 0.0005 RNE
— RSR 6 bit — RSR 12 bit 24-bit LFSR
00004 4 — RSR12 :\s:s 000030 1 ps2a m: 00004 ;z.m:usn
s oz e ps
GEIE 5 000020 0003 - cieherlavers
20002 WI‘\ \ 2 0.00015 e ”"l)
0.0001 } h ‘ l‘}‘ G0 } ,' ‘ v‘
g f ¥ \ A | 00001 | ‘ \
1 Y‘p‘ | A\ ,‘n‘m)\ ”' W 0.00005 “'\,A\ : ‘M/A‘,\,Am \ ,I.ﬁ‘),‘\ M W ‘\
0.0000 NV s 0.00000 0.0000 Nt Y o v
o 000 a0 a0 moo 10000 o P o w00 a0 e0 ewo oooo
Number of SDOTP operations Number of SDOTP operations Number of SDOTP operations
Absolute value of error Standard deviation of Abs(error) Absolute value of error
0.00014 RNE 0.00010 4/ Rpsp 6 bits 0.000175 -
—— RSR 6 bits —— RSR12 bits. 24-bit LFSR
000012 4 — RSR 12 bits 0.00008 - RSR 24 bits 0000150 | — 32°bit LFSR
RSR 24 bis — AR 36 bis 6apit LFSR
000010 { — Rk 36 bis oooo12s | samiirse+
000006 Sioner ayers /
0.00008 g 5 0.000100 = g
0.00006 E 0.00004 B 0.000075 = “/
0.00004 0000050 -] ‘(U ! A
000002 u
7 N y
000000 000000 0000000 | R !
; 20'00 Aﬂlnﬂ 50.00 HDIOD 10&00 ; 2000 40‘00 ﬁﬂlﬂD 8000 10;00 ; 20'00 40'00 Wlﬂﬂ 80‘00 10;ﬂﬂ
Number of SDOTP aperations Number of SDOTP operations Number of SDOTP aperations
Figure A.4.: Results of changing parameters for SDOTP, FP16 input.
.
A.5. Comparison of SDOTP Unit with Different Pipeline
Registers
Comparisons for old SDOTP unit with different #regs Comparisons for new SDOTP unit with different #regs
28 T T T T T T 28 T r T T T T
-%- 0regs % -%- 0regs
26 - -%- lregs | 26 Y x -%- lregs |
)f‘ ,;‘ -3~ 2regs 4 % -¥#- 2regs
24 b \ \ -%- 3regs || 24 \ x \ -3%- 3regs
\ “ \ *
\
22 X’f\ 22
i\ m
20 - Ny 1 2 20 1
N\ <
18 - 18 4
16 + . 16 + .
14 - . 14 g
12 | | | | | L 12 | | | | L
2 4 6 8 10 12 14 16 2 4 8 10 12 14 16

T(periods - slack) [ns]

T(periods - slack) [ns]

Figure A.5.: Comparison of SDOTP unit with different pipeline registers

29

A. More Evaluation Results

A.6. Area of SDOTP Unit with and without RSR
Extensions

Table A.1.: Area of SDOTP Unit with and without RSR Extensions
Time[ns] #reg old[um?, kGE|] new[um?, kGE] incr

. s W
C W
C

30

Appendix B

Task Description

31

ETH

Eidgendssische Technische Hochschule Ziirich Institut fiir Integrierte Systeme

Swiss Federal Institute of Technology Zurich Integrated Systems Laboratory

SEMESTER THESIS AT THE DEPARTMENT OF
INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

SUMMER SEMESTER 2022

Design of a Floating-Point Stochastic Rounding Unit

Jayong Li and Enci Zhang

March 16, 2022

Luca Bertaccini, ETZ J 78, Tel. +41 44 632 55 58, 1bertaccini@iis.ee.ethz.ch
Gianna Paulin, ETZ J 76.2, Tel. +41 44 632 60 87, pauling@iis.ee.ethz.ch

Tim Fischer, ETZ J 76.2, Tel. +41 44 632 59 12, fischeti@iis.ee.ethz.ch
Handout: -

Due: —

The final report will be submitted in electronic format. All copies remain property of the
Integrated Systems Laboratory.

1 Introduction

The Internet of Things (IoT) era is characterized by billions of devices gathering data through
sensors and sending them to servers, where the data can then be processed. To save bandwidth
and energy across the network, a pre-processing step may also be implemented directly on the
IoT device. Since transmitting data requires more energy than computing on the IoT device,
pre-processing the information and sending a lower amount of data is more efficient than sending
the whole information.

PULPissimo [1] is the microcontroller architecture of the more recent IoT PULP chips.
PULPissimo takes care of autonomous I/O, advanced data pre-processing, external interrupts,
etc. The PULPissimo architecture is built upon a single CV32E40P core [2], a small and efficient
4-stage 32-bit RISC-V core. The integer core is coupled with a floating-point unit (FPU) [3],
thus providing support for single-precision (FP32) floating-point instructions.

Recently, an existing FPU has been extended to add support for low-precision floating-point
formats and floating-point dot products with accumulation (SDOTP) [7]. Such a module allows
for computing double the number of fused multiply-add in one cycle, a higher energy efficiency,
and enables better accuracy results. Since floating-point additions are non-associative, two
consecutive additions might be lossy, while the dot product unit is lossless.

Various studies on neural networks training with low-precision floating-point formats have
proven accuracy benefits when employing stochastic rounding over the widely used round-
to-nearest-even (RNE) mode [5]. However, such studies rely on software libraries emulating
floating-point stochastic rounding. The first products supporting stochastic rounding, the In-
tel Loihi chip and the new Graphcore IPU, have been recently released [6]. However, those
implementations are closed-source.

In this project, we investigate hardware support for stochastic rounding and explore the
benefits of including it into PULPissimo.

2 Project Goals
The main tasks of this project are:

e T1: Implement a stochastic rounding hardware unit In this task, the students will
develop a stochastic rounding unit and integrate it into the open-source floating-point dot
product unit.

e T2: Test the newly added stochastic rounding unit In this task, the students will
test their stochastic rounding unit comparing its result with a software golden model.

e T3: Comparison with the native SDOTP unit using RNE In this task, the students
will compare the SDOTP unit with support for stochastic rounding unit against its native
implementation in terms of area, and timing and performing an error analysis.

e T4: Tapeout contribution In this task, the students will contribute to a tapeout of the
PULPissimo chip including the stochastic rounding unit.

3 Deliverables
1. D1: Working SDOTP module including stochastic rounding support.
2. D2: Comparison with baseline system (SDOTP unit using RNE).

3. D3: Backend scripts for tapeout.

4 Project Realization

4.1 Project Plan

Within the first month of the project you will be asked to prepare a project plan. This plan
should identify the tasks to be performed during the project and sets deadlines for those tasks.
The prepared plan will be a topic of discussion of the first week’s meeting between you and your
advisers. Note that the project plan should be updated constantly depending on the project’s
status.

4.2 Meetings

Weekly meetings will be held between the student and the assistants. The exact time and
location of these meetings will be determined within the first week of the project in order to fit
the students and the assistants schedule. These meetings will be used to evaluate the status and
progress of the project. Beside these regular meetings, additional meetings can be organized to
address urgent issues as well.

4.3 Coding Guidelines

HDL Code Style Adapting a consistent code style is one of the most important steps in
order to make your code easy to understand. If signals, processes, and modules are always
named consistently, any inconsistency can be detected more easily. Moreover, if a design group
shares the same naming and formatting conventions, all members immediately feel at home
with each other’s code. At IIS, we use lowRISC’s style guide for SystemVerilog HDL: https:
//github.com/1owRISC/style-guides/.

Software Code Style We generally suggest that you use style guides or code formatters
provided by the language’s developers or community. For example, we recommend LLVM’s or
Google’s code styles with clang-format for C/C++, PEP-8 and pylint for Python, and the
official style guide with rustfmt for Rust.

Version Control Even in the context of a student project, keeping a precise history of changes
is essential to a maintainable codebase. You may also need to collaborate with others, adopt
their changes to existing code, or work on different versions of your code concurrently. For all
of these purposes, we heavily use (it as a version control system at IIS. If you have no previous
experience with Git, we strongly advise you to familiarize yourself with the basic Git workflow
before you start your project.

4.4 Report

Documentation is an important and often overlooked aspect of engineering. One final report has
to be completed within this project. The common language of engineering is de facto English.
Therefore, the final report of the work is preferred to be written in English. Any form of word
processing software is allowed for writing the reports, nevertheless the use of IMTEX with Tgif' or
any other vector drawing software (for block diagrams) is strongly encouraged by the IIS staff.

Final Report The final report has to be presented at the end of the project and a digital
copy need to be handed in. Note that this task description is part of your report and has to be
attached to your final report.

4.5 Presentation

There will be a presentation (15 min presentation and 5 min Q&A) at the end of this project in
order to present your results to a wider audience. The exact date will be determined towards
the end of the work.

References

References
[1] https://github.com/pulp-platform/pulpissimo
[2] https://github.com/openhwgroup/cv32e40p

[3] Mach, Stefan, et al. "Fpnew: An open-source multiformat floating-point unit architecture
for energy-proportional transprecision computing." IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 29.4 (2020): 774-787.

[4] https://github.com/T-head-Semi/opene9d06

[5] Wang, Naigang, et al. "Training deep neural networks with 8-bit floating point numbers."
Advances in neural information processing systems 31 (2018).

[6] Croci, Matteo, et al. "Stochastic Rounding: Implementation, Error Analysis, and Applica-
tions." (2021).

[7] https://github.com/pulp-platform /fpnew/tree/feature/expanding dotp

Ziirich, March 16, 2022 Prof. Dr. Luca Benini

!See: http://bourbon.usc.edu:8001/tgif/index.html and http://www.dz.ee.ethz.ch/en/information/
how-to/drawing-schematics.html.

Appendix C

Declaration of Originality

36

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor's thesis,
Master's thesis and any other degree paper undertaken during the course of studies, including the
respectlve electronic versions.

Lecturers may also require a declaration of orlglnallty for other written papers compiled for their
courses. .

I hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Desipe of o Floatia-Poit, Shoohustic. Romding Unit

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):
Lz J z‘a[vausl
Zheney , Eani v

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

- | have documented all methods, data and processes truthfully.
— | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.
Place, date Signature(s)
Zurich. 0}.06. 2022 Jioyouy L3
Bty Uhaed

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

Bibliography

[1]

2]

3]

4]

5]

[6]

7]

N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, “Training
deep neural networks with 8-bit floating point numbers,” in Advances in
Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,
Inc., 2018. [Online|. Available: https://proceedings.neurips.cc/paper/2018/file/
335d3d1cd7ef05ec77714a215134914c-Paper.pdf

C. Su, S. Zhou, L. Feng, and W. Zhang, “Towards high performance low bitwidth
training for deep neural networks,” Journal of Semiconductors, vol. 41, no. 2, p.
022404, 2020.

L. K. Muller and G. Indiveri, “Rounding methods for neural networks
with low resolution synaptic weights,” 2015. [Online|. Available: https:
/ /arxiv.org/abs/1504.05767

S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “Fpnew: An open-source multiformat
floating-point unit architecture for energy-proportional transprecision computing,”
IEEFE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 4,
pp- 774787, 2020.

P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and L. Benini, “Quentin:
an ultra-low-power pulpissimo soc in 22nm fdx,” in 2018 IEEE SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), 2018, pp. 1-3.

M. Hohfeld and S. E. Fahlman, “Probabilistic rounding in neural network learning
with limited precision,” Neurocomputing, vol. 4, no. 6, pp. 291-299, 1992. [Online].
Available: https://www.sciencedirect.com/science/article/pii/092523129290014G

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with
limited numerical precision,” in Proceedings of the 32nd International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, F. Bach and

38

https://proceedings.neurips.cc/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://arxiv.org/abs/1504.05767
https://arxiv.org/abs/1504.05767
https://www.sciencedirect.com/science/article/pii/092523129290014G

Bibliography

D. Blei, Eds., vol. 37. Lille, France: PMLR, 07-09 Jul 2015, pp. 1737-1746.
[Online|. Available: https://proceedings.mlr.press/v37/guptalb.html

[8] T. Na, J. H. Ko, J. Kung, and S. Mukhopadhyay, “On-chip training of recurrent
neural networks with limited numerical precision,” in 2017 International Joint Con-
ference on Neural Networks (IJCNN), 2017, pp. 3716-3723.

[9] M. K, “Stochasticrounding.jl,” 2020. [Online|. Available: https://github.com/
milankl /StochasticRounding.jl

[10] M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis, “Stochastic Rounding:
Implementation, Error Analysis, and Applications,” Oct. 2021, working paper or
preprint. [Online|. Available: https://hal.archives-ouvertes.fr/hal-03378080

[11] T. Zhang, Z. Lin, G. Yang, and C. D. Sa, “Qpytorch: A low-precision arithmetic
simulation framework,” 2019.

[12] A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw,
Y. Seurin, and C. Vikkelsoe, “Present: an ultra-lightweight block cipher,” vol. 4727,
09 2007, pp. 450-466.

39

https://proceedings.mlr.press/v37/gupta15.html
https://github.com/milankl/StochasticRounding.jl
https://github.com/milankl/StochasticRounding.jl
https://hal.archives-ouvertes.fr/hal-03378080

	Introduction
	Context and Motivation
	Related Work
	Our Contributions
	Implementation of the Stochastic Rounding Extension
	Functional Verification
	Performance Assessment
	Tapeout Adaptations

	Algorithm
	Existing Stochastic Rounding Algorithms
	Our Hardware SR Algorithm

	Hardware Architecture
	Basic Setup
	Implementation and Parameters
	Pseudo-random Number Generator

	Verification and Results
	Possible Configurations in the Hardware and Cases Tested
	Input Generation
	Golden models
	In Python
	In Julia

	Functional Verification of SR
	VSUM, FP16 Input, FP16 Output
	Other operations and formats

	Implementation and AT analysis

	Conclusion and Future Work
	More Evaluation Results
	VSUM, FP8 Input, FP8 Output
	VSUM, FP32 Input, FP32 Output
	SDOTP, FP8 Input, FP16 Output
	SDOTP, FP16 Input, FP32 Output
	Comparison of SDOTP Unit with Different Pipeline Registers
	Area of SDOTP Unit with and without RSR Extensions

	Task Description
	Declaration of Originality

