ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Integrated Systems Laboratory

Institut fiir Integrierte Systeme

DEPARTMENT OF INFORMATION TECHNOLOGY AND
ELECTRICAL ENGINEERING

Spring Semester 2023

Eclipse: Speed Test and Power
Measurement

VLSI4 Mini Project

Jiayong Li
jiayli@ethz.ch

July 2023

Supervisors: Luca Bertaccini, 1bertaccini@iis.ee.ethz.ch
Tim Fischer, fischeti@iis.ee.ethz.ch

Abstract

As a mini-project from course VLSI4, the chip named Eclipse is tested. Eclipse is a
microcontroller using PULPissimo architecture and taped out in TSMC 65nm technology.
The basic setup and functional tests are done in other Eclipse-related mini-projects.
This report focuses on finding the maximum speed and measuring the chip’s power
consumption.

There is a short introduction to the chip in Chapter 1. Before performing the speed
test, the FLL needs to be configured to the correct frequency. Chapter 2 shows how the
FLL is configured and some measurement results to verify that the chip is in the correct
frequency. After that, the speed test results are shown in Chapter 3. And Chapter 4
shows the power measurement results.

ii

Contents

1__Introductionl 1
2 Configure FLL Frequency| 3
[2.1 Setup of Oscilloscope] 3
[2.2 Relationship Between GPIO Toggling Period and Core Clock Frequency| . 4
[2.3 Change Clock Frequency by the Test Method| 5
[3 Speed Tests| 6
3.1 Set of Functional Testsl 6
B2 Resulll 7
4__Power Tests 8
4.1 Power vs. Frequency| 8
42 Powervs. VDDI. 9
4.3 Power Consumption at Max Frequencies vs. VDD|. 10
b__Conclusionl 12

iii

List of Figures

M1

Eclipse Hardware Architecture]

T2

Eclipse Pinout|

R1

GPIO Toggling in Oscilloscope|

1

Eclipse MATMUL, Power vs. Frequency|

12

Eclipse MATMUL, Power vs. VDD|.

13

Eclipse MATMUL, Power vs. VDD in Log Scale|]

A4

Voltage Sweep vs. Max Frequency vs. Power Consumption|

v

List of Tables

[2.1 Core Clock Frequency and GPIO Toggle Period without FLLL Configl . . . 4
2.2 GPIO Toggling Period and Ratio to 50MHz Case in Different Target Freq 5

[3.1 The Set of Functional Tests Chosen to Check the Chip is Working Correctly|] 6
3.2 Max Frequency at Different Core Voltagel 7

4.1 Eclipse Test Summary|] oL 11

Chapter

Introduction

Eclipse is a microcontroller using PULPissimo architecture and taped out in TSMC 65nm
technology. It features a new core-FPU interface, X-interface, a DIV/SQRT unit from
T-head, and a stochastic rounding (SR) extension in the SDOTP unit. Figure shows
the architecture of Eclipse. New features are colored in red.

Multibank Interleaved SRAM (128 kiB) Private SRAM (64 kiB) 8 kiB
[BANK1 l [BANK2 l [BANK3 l [BANKO ‘ [BANK1 l Boot ROM
7y 7y 7'y 7} A
v v v v v v
LOW LATENCY INTERCONNECT

APB
m Bridge
FPU Subsystem

v
< APB bus >
s ot
T-HEAD DIVSQRT
FLL

—

SoC
Control
Timer
SoC Event

Figure 1.1: Eclipse Hardware Architecture

Eclipse uses an in-order RISCV core, CV32E40P, with 192 kiB on-chip SRAM. The whole
SoC is in 1 power domain, and there are 2 clock domains: SoC and Peripherals. In the

1 Introduction

testing, the JTAG interface is used to halt the core, load the program, configure FLL,
resume the core, and check the return value.

Eclipse uses QFN56 packaging and the pinout is shown in Figure [T.2]

050321
o1-eps=0dz!
o Tus>-wids
ogus>-wids
6-ssn
or-goips-uids
or-zops-wids
o-Tops-wids
o-goips-wds

vecPad Generated by ordinator 0.63

19/07/2022 22:50:59

5 e
—t==] 7
—

—
3

eclipse

5
4

vss_11

oropy-bexl
orxien
orxiven

Figure 1.2: Eclipse Pinout

The basic setup and functional tests are done in other Eclipse-related mini-projects. The
chip is working properly at low frequencies. This project reuses the existing setup and
some functional tests to measure the max frequency and power of the chip.

Chapter

Configure FLL Frequency

The first step of the whole measurement is configuring the FLL on the chip to achieve dif-
ferent core frequencies. This is done using the IIS test method, vega_tml . changeFrequency.
The FLL frequency is a parameter in the test method, and we can do a frequency sweep
easily in the tester software.

The remaining parts of this chapter will show how to verify the frequencies are set up
correctly. All the measurements in this report are done on the chip with the number 3
written on it and the chip is operating at room temperature.

2.1 Setup of Oscilloscope

gy ...,

X Student_t"‘NfS.,égld_vl_r

p_10: 1, 15, 29, 43
p_Cores 8, 22, 36, 50

soc_ETH-CH_Generic 2014

(a) Stable Waveform of GPIO Toggling (b) Pin 45 is Measured

Figure 2.1: GPIO Toggling in Oscilloscope

2 Configure FLL Frequency

To measure the core frequency, the core is programmed to do an infinite loop on INT32
MATMUL. After every 10 MATMUL, the chip will toggle the output voltage on GPIO
0(Correspond to spim_ sdio0 io, pin 45). By measuring the period of the GPIO toggling
through an oscilloscope, we can get the core frequency and verify the core frequencies
are set to the desired values. The program is shown in pseudo-code [I] and the setup of
the oscilloscope is shown in Figure

Algorithm 1: MATMUL INT32 with GPIO toggling

1 GPIO_level = 1;
2 GPIO _set(GPIO _level);

© 00 N O vtk

// Toggle GPIO

while {rue do

// Do MATMUL x10 and toggle GPIO
for i <~ 0 to 10 do

| matmul();

end

GPIO _set(!GPIO _level);

GPIO _level = IGPIO _level,

end

2.2 Relationship Between GPIO Toggling Period and Core
Clock Frequency

To link the core clock frequency to the GPIO toggling period measured by the oscillo-
scope, the same program is run in both RTL simulation and real chip without the FLL
configuration step. In the RTL simulation(both functional and post-layout), GPIO tog-
gling period is obtained by averaging the first 4 toggling periods in the waveform. The
measurement results are shown in table 2,11

Table 2.1: Core Clock Frequency and GPIO Toggle Period without FLL Config

Method Core Clock|[MHz] GPIO Toggle Period|ms]
Real Chip No FLL Config — 10.8
Functional Simulation 50.525 10.8
Post-layout (with SDF) Simulation 50.916 10.6

2 Configure FLL Frequency
2.3 Change Clock Frequency by the Test Method

To verify the test method sets the FLL to the correct clock frequency, the same program
is run on the real chip after FLL configuration step, and the following two things are
checked:

1. Starting point: The FLL frequency after reset is 50MHz. We should obtain the same
GPIO toggling period when explicitly configuring FLL to 50MHz.

2. Positive relationship: The ratio of GPIO toggling period shrinking should be the same
as the ratio between the frequencies we want to set at the two points.

Table 2.2: GPIO Toggling Period and Ratio to 50MHz Case in Different Target Freq
Target FreqMHz|] 50 100 150 200 250 300 350

Period[ms] 11.1 555 3.70 2.77 222 185 1.59
Ratio — 200 3.00 4.01 5.00 6.00 6.99

Results from the real chip are shown in table Measurement results show a clear
positive relationship between GPIO toggling and core frequencies. But at 50 MHz, there
are 0.2~0.3ms differences in the GPIO toggle period obtained from simulation, FLL
reset, and test methods. This gives ~2% difference in the corresponding frequency. The
chip does not work(no GPIO toggling at all) at 400MHz and we only need to know the
frequency to be accurate to 10 MHz. Since 400MHz x 2% < 10MHz, we do not need
extra calibration on this ~2% difference.

For the tests in the following chapters, all frequency sweeps are done by passing core
frequency as a parameter to the test method, vega_tml.changeFrequency.

Chapter

Speed Tests

In the previous chapter, we verified our approach can set the chip to the correct frequency.
We choose several functional tests on new features, computations, and IO to see if the
chip works correctly. The largest frequency at which all functional tests are passed is the
max frequency at the given voltage.

3.1 Set of Functional Tests

Table shows the functional tests we chose. Except for the GPIO Toggle, all the other
tests are bundled together: first change frequency, then run each functional test and
check the return value. The GPIO Toggle is run manually around the biggest frequency
found in the previous step. The vector in this test is the same as we measure the FLL
frequency: toggle GPIO every 10 MATMUL. The test is passed when a stable toggling
waveform is observed in the oscilloscope.

Table 3.1: The Set of Functional Tests Chosen to Check the Chip is Working Correctly

Target Test Check
New Features SDOTP with SR return 16 + error
DIV/SQRT Unit return 32 + error
SDOTP with Diff FP Format return 64 + error
Computation MATMUL FP32 return 128 + error
MATMUL INT32 return 160 + error
10 GPIO Toggle stable waveform in oscilloscope

3 Speed Tests

The return values of different tests are set to different values plus the number of errors
detected in the program. This is to avoid the return value of the previous program
remaining in the register and affect our checks. This lets us know that the corresponding
test is run and returned.

3.2 Result

Table shows the max frequency measured on the chip(Eclipse chip with number 3 on
it). The largest frequency for GPIO test and all other tests are shown in rows 2 and 3
separately.

Table 3.2: Max Frequency at Different Core Voltage
Core VDD|V] 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Max Freq|MHz| 180 220 250 280 310 340 370

GPIO Pass|MHz] 180 220 250 280 310 340 370
All Other Pass|[MHz| 180 220 260 290 330 350 380

In the measurement, GPIO toggling waveform in the oscilloscope still exists when the
frequency is 10 or 20 MHz higher than the frequency shown in the table, but those wave-
forms are unstable. The toggling will disappear in the oscilloscope and stay constantly
low or high after 10 to 20 seconds.

Chapter

Power Tests

After knowing the max frequency, a power test is performed. We measured the operating
power of the chip in different tasks at different frequencies and core VDD. The chip is
first configured to perform an infinite loop on a specific task, and then we measure
the operating current by the dc_tml.DcTest.StandbyCurrent test method. This test
method will measure the current flows to the chip without loading any pattern and the
power is obtained by multiplying this current with the core voltage.

4.1 Power vs. Frequency

MATMUL FP32 Power vs. Frequency MATMUL INT32 Power vs. Frequency

40 T T 40 . :
—— VDD =1.20V —— VDD =120V
35 H VDD = 1.15V 4 35 H VDD = 1.15V 4
E‘ —— VDD =1.10 V E —— VDD =110 V
€ 30— VDD=1.05V 4 € 30— VDD =1.05V 4
'z —— VDD = 1.00 V 'z —— VDD = 1.00 V
-325»—'— VDD = 0.95 V 4 _‘2‘25,+ VDD = 0.95 V 4
o VDD = 0.90 V o VDD = 0.90 V g
£ £ 4
5 20 4 5 20 0 4
2 2 o
S 15 1 S 15 1
g g
3 10 - 2 10 4
))
-9 -9
5 4 5 4
o L L L L L L 0 L L L L L L
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Core Frequency[MHz] Core Frequency[MHz]
(a) MATMUL FP32 (b) MATMUL INT32

Figure 4.1: Eclipse MATMUL, Power vs. Frequency

4 Power Tests

Figure [£.1] shows the relationship between power consumption and core frequency at
different core VDD. The chip is asked to run matrix-matrix multiplication on FP32 and
INT32 respectively. For each voltage level, the frequency starts at 50MHz and ends at the
maximum frequency the chip can achieve at that voltage level. The max frequencies are
labeled by dash lines in the plots. The linear relationship between power and frequency
can be observed in the plots.

4.2 Power vs. VDD

MATMUL FP32 Power vs. VDD
16 T T

MATMUL INT32 Power vs. VDD
16 T T

—— Frequency = 150 MHz
14 1 Frequency = 100 MHz i
—— Frequency = 50 MHz

—e— Frequency = 150 MHz
Frequency = 100 MHz
—+— Frequency = 50 MHz

14 H

12

10

Power Consumption[mW]
Power Consumption[mW]

0.90 0.95 1.00 1.05 1.10 1.15 1.20 0.90 0.95 1.00 1.05 1.10 1.15 1.20

Core VDD[V] Core VDD[V]
(a) MATMUL FP32 (b) MATMUL INT32

Figure 4.2: Eclipse MATMUL, Power vs. VDD

MATMUL FP32 Power vs. VDD in Log Scale MATMUL INT32 Power vs. VDD in Log Scale

—— Frequency = 150 MHz —— Frequency = 150 MHz
Frequency = 100 MHz Frequency = 100 MHz
—— Frequency = 50 MHz —+— Frequency = 50 MHz

2.5 -

2.5 -

2.0

1.5

In(Power Consumption[mW1])

1.0

In(Power Consumption[mW1])

-0.10 -0.05 0.00 0.05 0.10 0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

In(Core VDD[V]) In(Core VDD[V])
(a) MATMUL FP32 (b) MATMUL INT32

Figure 4.3: Eclipse MATMUL, Power vs. VDD in Log Scale

The relationship between power consumption and voltage is shown in Figure[d.2] Voltage

4 Power Tests

is changed from 0.9V to 1.2V. The same data is plotted in a log scale to check the
linear relationship between power and the voltage square. Figure shows the linear
relationship between power and voltage in log scale and the coefficient is approximately
2.

4.3 Power Consumption at Max Frequencies vs. VDD

Figure [£.4) and Table [4.I] summarize the speed and power test results. The max frequen-
cies at different voltage level is shown in blue line and the power consumption at the
max frequencies in different tasks and voltage levels are shown in red lines.

400 T T T T T 40
—%— MATMUL INT32
—— MATMUL FP32
350 - —¥— SDOTP FP8 to FP16 35
—A— SDOTP FP8 to FP16 with SR
'N —=— SDOTP FP16 to FP32 E
L 300 f—— SDOTP FP16 to FP32 with SR 30
= £
T e
3 :
g 250 25 5
Q o
g £
g 200 20 5
- 0
e c
) o
“ 150 15 U
o -
O ()
X
© 100 10 E
= o
50 | {5
0 1 1 1 1 1 0
0.90 0.95 1.00 1.05 1.10 1.15 1.20

Core VDDI[V]
Figure 4.4: Voltage Sweep vs. Max Frequency vs. Power Consumption

There is a clear difference between floating-point operations and integer operations.
Floating-point operations consume more power than integer operations. But the dif-
ferences between different floating-point programs are not too much.

This does not mean there are no differences in different FPU instructions. The programs
executed on the chip also contain data loading and branches for looping, FPU is also

10

4 Power Tests

Table 4.1: Eclipse Test Summary

Technology TSMC 65nm
Chip Area 4mm?

VDD Range 0.9-1.2V
Frequency Range 180 - 370MHz

Max FP Power 35.73mW
Max INT Power 29.16mW

not 100% utilized, so the differences between FPU instructions may not appear in the
measured results. To measure the difference between FPU instructions, some further
tests are needed.

11

Chapter

Conclusion

This project measures speed and power consumption for the Eclipse chip. First, GPIO
toggling is used to characterize the core frequency and we verify that the chip is working
at the correct frequency based on the measurements.

After that, several functional tests on different units are performed and the max frequen-
cies at each voltage level are measured. Then, the chip’s power consumption is obtained
by measuring the current flows to the chip in an infinite loop of a specific task. We also
checked the relationship between power, frequency, and voltage are as expected.

The summary of all measurements is shown in Figure [£.4] and Table [£.1] The chip works
at 370MHz in a 1.2V power supply. The max power consumption of the floating-point
computation task is 35.73mW and the integer computation task is 29.16mW.

12

	Introduction
	Configure FLL Frequency
	Setup of Oscilloscope
	Relationship Between GPIO Toggling Period and Core Clock Frequency
	Change Clock Frequency by the Test Method

	Speed Tests
	Set of Functional Tests
	Result

	Power Tests
	Power vs. Frequency
	Power vs. VDD
	Power Consumption at Max Frequencies vs. VDD

	Conclusion

